
1 Fall 2002, Lecture 20

Deadlock

� Consider this example:

Process A Process B

printer–>wait(); disk–>wait();
disk->wait(); printer->wait();
print file print file
printer->signal(); disk->signal();
disk->signal(); printer->signal();

� Deadlock occurs when two or more
processes are each waiting for an event
that will never occur, since it can only be
generated by another process in that set

� Deadlock is one of the more difficult
problems that OS designers face

● As we examine various approaches to
dealing with deadlock, notice the
tradeoffs between how well the approach
solves the problem, and its performance
/OS overhead

2 Fall 2002, Lecture 20

Deadlock (cont.)

� OS must distribute system resources
among competing processes:

● CPU cycles preemptable

● Memory space preemptable

● Files non-preemptable

● I/O devices (printer) non-preemptable

� A request for a type of resource can be
satisfied by any resource of that type

● Use any 100 bytes in memory

● Use either one of two identical printers

� Process requests resource(s), uses
it/them, then releases it/them

● We will assume here that the resource is
re-usable; it is not consumed

● Waits if resource is not currently available

3 Fall 2002, Lecture 20

Deadlock Conditions

� These 4 conditions are necessary and
sufficient for deadlock to occur:

● Mutual exclusion — if one process holds
a resource, other processes requesting
that resource must wait until the process
releases it (only one can use it at a time)

● No preemption — resources are
released voluntarily; neither another
process nor the OS can force a process
to release a resource

● Hold and wait — processes are allowed
to hold one (or more) resource and be
waiting to acquire additional resources
that are being held by other processes

● Circular wait — there must exist a set of
waiting processes such that P0 is waiting
for a resource held by P1, P1 is waiting
for a resource held by P2, … Pn-1 is
waiting for a resource held by Pn, and Pn
is waiting for a resource held P0

4 Fall 2002, Lecture 20

Deadlock Prevention

� Basic idea: ensure that one of the 4
conditions for deadlock can not hold

� Mutual exclusion — if one process
holds a resource, other processes
requesting that resource must wait until
the process releases it

● Hard to avoid mutual exclusion for non-
sharable resources
� Printers
� Files

� I/O devices or network connections

● For printer, avoid mutual exclusion
through spooling — then process won’t
have to wait on physical printer

● However, many resources are sharable,
so deadlock can be avoided for them
� Read-only files (binaries, perhaps)

� Most files in your account

5 Fall 2002, Lecture 20

Deadlock Prevention
(cont.)

� No preemption — resources are
released voluntarily; neither another
process nor the OS can force a process
to release a resource

● To avoid, allow preemption
� If process A requests resources that aren’t

available, see who holds those resources
– If the holder (process B) is waiting on

additional resources, preempt the
resource requested by process A

– Otherwise, process A has to wait

» While waiting, some of its current
resources may be preempted

» Can only wake up when it acquires
the new resources plus any
preempted resources

� If a process requests a resource that can
not be allocated to it, all resources held by
that process are preempted

– Can only wake up when it can acquire all
the requested resources

� Only works for resources whose state can
be saved/restored (memory, not printer)

6 Fall 2002, Lecture 20

Deadlock Prevention
(cont.)

� Hold and wait — processes are allowed
to hold one (or more) resource and be
waiting to acquire additional resources
that are being held by other processes

● To avoid, ensure that whenever a
process requests a resource, it doesn’t
hold any other resources
� Request all resources (at once) at

beginning of process execution
– Process which loops forever?

� Request all resources (at once) at any
point in the program

� To get a new resource, release all current
resources, then try to acquire new one
plus old ones all at once

● Difficult to know what to request in
advance

● Wasteful; ties up resources and reduces
resource utilization

● Starvation is possible

7 Fall 2002, Lecture 20

Deadlock Prevention
(cont.)

� Circular wait — there must exist a set of
waiting processes such that P0 is waiting
for a resource held by P1, P1 is waiting
for a resource held by P2, … Pn-1 is
waiting for a resource held by Pn, and Pn
is waiting for a resource held P0

● To avoid, impose a total order on all
resources, and require process to request
resource in that order
� Order: disk drive, printer, CDROM

� Process A requests disk drive, then printer
� Process B requests disk drive, then printer

� Process B does not request printer, then
disk drive, which could lead to deadlock

● Order should be in the logical sequence
that the resources are usually acquired
� Allow process to release all resources,

and start request sequence over

� Or force process to request total number
of each resource in a single request

8 Fall 2002, Lecture 20

Dealing with Deadlock

� The Ostrich Approach — stick your head
in the sand and ignore the problem

� Deadlock prevention — prevent deadlock
from occurring by eliminating one of the 4
deadlock conditions

� Deadlock detection algorithms — detect
when deadlock has occurred

● Deadlock recovery algorithms — break
the deadlock

� Deadlock avoidance algorithms —
consider resources currently available,
resources allocated to each process, and
possible future requests, and only fulfill
requests that will not lead to deadlock

9 Fall 2002, Lecture 20

Resource-Allocation Graph

� The deadlock conditions can be modeled
using a directed graph called a resource-
allocation graph (RAG)

● 2 kinds of nodes:
� Boxes — represent resources

– Instances of the resource are represented
as dots within the box

� Circles — represent processes

● 2 kinds of (directed) edges:
� Request edge — from process to resource

— indicates the process has requested
the resource, and is waiting to acquire it

� Assignment edge — from resource
instance to process — indicates the
process is holding the resource instance

● When a request is made, a request edge
is added
� When request is fulfilled, the request edge

is transformed into an assignment edge

� When process releases the resource, the
assignment edge is deleted

10 Fall 2002, Lecture 20

Interpreting a RAG
With Single Resource Instances

� If the graph does not contain a cycle,
then no deadlock exists

� If the graph does contain a cycle,
then a deadlock does exist

� With single resource instances,
a cycle is a necessary and sufficient
condition for deadlock

p2p1 p3

r1 r2

r3 r4

p2p1 p3

r1 r2

r3 r4

