
1 Fall 2002, Lecture 21

Dealing with Deadlock
(Review)

� The Ostrich Approach — stick your head
in the sand and ignore the problem

� Deadlock prevention — prevent deadlock
from occurring by eliminating one of the 4
deadlock conditions

� Deadlock detection algorithms — detect
when deadlock has occurred

● Deadlock recovery algorithms — break
the deadlock

� Deadlock avoidance algorithms —
consider resources currently available,
resources allocated to each process, and
possible future requests, and only fulfill
requests that will not lead to deadlock

2 Fall 2002, Lecture 21

Resource-Allocation Graph
(Review)

� The deadlock conditions can be modeled
using a directed graph called a resource-
allocation graph (RAG)

● 2 kinds of nodes:
� Boxes — represent resources

– Instances of the resource are represented
as dots within the box

� Circles — represent processes

● 2 kinds of (directed) edges:
� Request edge — from process to resource

— indicates the process has requested
the resource, and is waiting to acquire it

� Assignment edge — from resource
instance to process — indicates the
process is holding the resource instance

● When a request is made, a request edge
is added
� When request is fulfilled, the request edge

is transformed into an assignment edge

� When process releases the resource, the
assignment edge is deleted

3 Fall 2002, Lecture 21

Interpreting a RAG With Single
Resource Instances (Review)

� If the graph does not contain a cycle,
then no deadlock exists

� If the graph does contain a cycle,
then a deadlock does exist

� With single resource instances,
a cycle is a necessary and sufficient
condition for deadlock

p2p1 p3

r1 r2

r3 r4

p2p1 p3

r1 r2

r3 r4

4 Fall 2002, Lecture 21

Deadlock Detection
(Single Resource of Each Type)

� If all resources have only a single
instance, deadlock can be detected by
searching the resource-allocation graph
for cycles

● Silberschatz defines a simpler graph,
called the wait-for graph, and searches
that graph instead
� The wait-for graph is the resource-

allocation graph, minus the resources

� An edge from p1 to p2 means p1 is
waiting for a resource that p2 holds (here
we don’t care which resource is involved)

� One simple algorithm:

● Start at each node, and do a depth-first
search from there

● If a search ever comes back to a node it’s
already found, then it has found a cycle

5 Fall 2002, Lecture 21

Interpreting a RAG
With Multiple Resource Instances

� If the graph does not contain a cycle,
then no deadlock exists

� If the graph does contain a cycle,
then a deadlock may exist

� With multiple resource instances,
a cycle is a necessary (but not
sufficient) condition for deadlock

p2p1 p3

r1 r2

r3 r4

p2p1 p3

r1 r2

r3 r4

6 Fall 2002, Lecture 21

Interpreting a RAG With
Multiple Resource Instances (cont.)

� If the graph does contain a knot (and a
cycle), then a deadlock does exist

� If the graph does not contain a knot,
then a deadlock does not exist

� With multiple resource instances,
a knot is a sufficient condition for
deadlock

p2p1 p3

r1 r2

r3 r4

p2p1 p3

r1 r2

r3 r4

7 Fall 2002, Lecture 21

Deadlock Detection
(Multiple Resources of Each Type)

� This algorithm (Coffman, 1971) uses the
following data structures:

� n processes, m types of resources

● Existing Resources vector tells number
of resources of each type that exist

● Available Resources vector tells number
of resources of each type that are
available (unassigned to any process)

● i-th row of Current Allocation matrix tells
number of resources of each type
allocated (assigned) to process i

Existing Resources Available Resources

(E1, E2, E3, …, Em) (A1, A2, A3, …, Am)

Current Allocation

C11 C12 C13 C1m…

C21 C22 C23 C2m…

Cn1 Cn2 Cn3 Cnm…

.

.

.

.

.

.

.

.

.

.

.

.

Request

R11 R12 R13 R1m…

R21 R22 R23 R2m…

Rn1 Rn2 Rn3 Rnm…

.

.

.

.

.

.

.

.

.

.

.

.

8 Fall 2002, Lecture 21

Deadlock Detection
(Multiple Resources of Each Type)

(cont.)

� Every resource is either allocated or
available

● Number of resources of type j that have
been allocated to all processes, plus
number of resources of type j that are
available, should equal number of
resources of type j in existence

� Processes may have unfulfilled requests

● i-th row of Request matrix tells number of
resources of each type process i has
requested, but not yet received

� Notation: comparing vectors

● If A and B are vectors, the relation A ≤ B
means that each element of A is less than
or equal to the corresponding element of
B (i.e., A ≤ B iff Ai ≤ Bi for 0 ≤ i ≤ m)

● Furthermore, A < B iff A ≤ B and A ≠ B

9 Fall 2002, Lecture 21

Deadlock Detection Algorithm
(Multiple Resources of Each Type)

� Operation:

● Every process is initially unmarked

● As algorithm progresses, processes will
be marked, which indicates they are able
to complete, and thus are not deadlocked

● When algorithm terminates, any
unmarked processes are deadlocked

� Algorithm:

1. Look for an unmarked process Pi for
which the i-th row of the Request matrix
is less than or equal to the Available
vector

2. If such a process is found, add the i-th
row of the Current matrix to the
Available vector, mark the process, and
go back to step 1

3. If no such process exists, the algorithm
terminates

10 Fall 2002, Lecture 21

Deadlock Detection Example
(Multiple Resources of Each Type)

� Whose request can be fulfilled?

● Process 1 — no — no CDROM available

● Process 2 — no — no printer available

● Process 3 — yes — give it the requested
resources, and after it completes and
releases those resources, A = (2 2 2 0)

● Process 1 still can’t run (no CDROM), but
process 2 can run, giving A = (4 2 2 1)

● Process 1 can run, giving A = (4 2 3 1)

Existing Resources Available Resources

(2 1 0 0)

Request

2 0 0 1

1 0 1 0

2 1 0 0

(4 2 3 1)

Current Allocation

0 0 1 0

2 0 0 1

0 1 2 0

resources = (tape drive plotter printer CDROM)

11 Fall 2002, Lecture 21

After Deadlock Detection:
Deadlock Recovery

� How often does deadlock detection run?

● After every resource request?

● Less often (e.g., every hour or so, or
whenever resource utilization gets low)?

� What if OS detects a deadlock?

● Terminate a process
� All deadlocked processes

� One process at a time until no deadlock
– Which one?
– One with most resources?

– One with less cost?
» CPU time used, needed in future
» Resources used, needed

– That’s a choice similar to CPU scheduling

� Is it acceptable to terminate process(es)?
– May have performed a long computation

» Not ideal, but OK to terminate it
– Maybe have updated a file or done I/O

» Can’t just start it over again!

12 Fall 2002, Lecture 21

After Deadlock Detection:
Deadlock Recovery (cont.)

� Any less drastic alternatives?

● Preempt resources
� One at a time until no deadlock

� Which “victim”?
– Again, based on cost, similar to CPU

scheduling

� Is rollback possible?
– Preempt resources — take them away

– Rollback — “roll” the process back to
some safe state, and restart it from there

» OS must checkpoint the process
frequently — write its state to a file

– Could roll back to beginning, or just
enough to break the deadlock

» This second time through, it has to
wait for the resource

» Has to keep multiple checkpoint files,
which adds a lot of overhead

� Avoid starvation
– May happen if decision is based on same

cost factors each time
– Don’t keep preempting same process (i.e.,

set some limit)

