
1 Fall 2002, Lecture 30

File System Abstraction

� Levels of abstraction:

� The hardware underneath:

Diagram from Computer Science, Volume 2, J. Stanley Warford, Heath, 1991.

User
Interface

Device-
Independent

Interface

Device
Interface

applications daemons servers

open() close()
read() write()

link()rename()

create()
delete()

tracks sectors blocks

seek() readblock() writeblock()

 other hardwaredisk

2 Fall 2002, Lecture 30

File System Issues

� Important to the user:

● Persistence — data stays around
between power cycles and crashes

● Ease of use — can easily find, examine,
modify, etc. data

● Efficiency — uses disk space well

● Speed — can get to data quickly

● Protection — others can’t corrupt (or
sometimes even see) my data

� OS provides:

● File system with directories and naming
— allows user to specify directories and
names instead of location on disk

● Disk management — keeps track of
where files are located on the disk,
accesses those files quickly

● Protection — no unauthorized access

3 Fall 2002, Lecture 30

User Interface to the File System

� A file is a logical unit of storage:

● A series of records (IBM mainframes)

● A series of bytes (UNIX, most PCs)

● A resource fork and data fork (Macintosh)
� Resource fork — labels, messages, etc.

� Data fork — code and data

� What is stored in a file?

● C++ source code, object files, executable
files, shell scripts, PostScript…

● Macintosh OS explicitly supports file
types — TEXT, PICT, etc.

● Windows uses file naming conventions —
“.exe” and “.com” for executables, etc.

● UNIX looks at contents to determine type:
� Shell scripts — start with “#”
� PostScript — starts with “%!PS-Adobe…”

� Executables — starts with magic number
4 Fall 2002, Lecture 30

File Operations

� Create(name)

● Constructs a file descriptor on disk to
represent the newly created file
� Adds an entry to the directory to

associate name with that file descriptor

● Allocates disk space for the file
� Adds disk location to file descriptor

� fileId = Open(name, mode)

● Allocates a unique identifier called the file
ID (identifier) (returned to the user)

● Sets the mode (r, w, rw) to control
concurrent access to the file

� Close(fileId)

� Delete(fileId)

● Deletes the file’s file descriptor from the
disk, and removes it from the directory

5 Fall 2002, Lecture 30

Common File Access Patterns

� Sequential access

● Data is processed in order, one byte at a
time, always going forward

● Most accesses are of this form

● Example: compiler reading a source file

� Direct / random access

● Can access any byte in the file directly,
without accessing any of its predecessors

● Example: accessing database record 12

� Keyed access

● Can access a byte based on a key value

● Example: database search, dictionary

● OS does not support keyed access
� User program must determine the address

from the key, then use random access
(provided by the OS) into the file

6 Fall 2002, Lecture 30

File Operations (cont.)

� Read(fileId, from, size, bufAddress)

● Random access read

● Reads size bytes from file fileId, starting
at position from, into the buffer specified
by bufAddress

for (pos=from, i=0 ; i < size ; i++)
*bufAddress[i] = file[pos++];

� Read(fileId, size, bufAddress)

● Sequential access read

● Reads size bytes from file fileId, starting
at the current file position fp, into the
buffer specified by bufAddress, and then
increments fp by size

 for (pos=fp, i=0 ; i < size ; i++)
*bufAddress[i] = file[pos++];

fp += size;

� Write — similar to Read

7 Fall 2002, Lecture 30

Directories and Naming

� Directories of named files

● User and OS must have some way to
refer to files stored on the disk

● OS wants to use numbers (index into an
array of file descriptors) (efficient, etc.)

● User wants to use textual names
(readable, mnemonic, etc.)

● OS uses a directory to keep track of
names and corresponding file indices

� Simple naming

● One name space for the entire disk
� Every name must be unique

● Implementation:
� Store directory on disk
� Directory contains <name, index> pairs

● Used by early mainframes, early
Macintosh OS, and MS DOS

8 Fall 2002, Lecture 30

Directories and Naming
(cont.)

� User-based naming

● One name space for each user
� Every name in that user’s directory must

be unique, but two different users can use
the same name for a file in their directory

● Used by TOPS-10 (DEC mainframe from
the early 1980s)

� Multilevel naming

● Tree-structured name space

● Implementation:
� Store directories on disk, just like files
� Each directory contains <name, index>

pairs in no particular order
– The file pointed to by a directory can be

another directory
» Names have “/” separating levels

– Resulting structure is a tree of directories

● Used by UNIX
� More on UNIX disk structures next time…

