

Fall 2002, Lecture 33

3

Evolution of UNIX Disk Management (cont.)

- What about making the blocks bigger?
 - Causes internal fragmentation
 - Most files are small, maybe one block
- Some measurements from a file system at UC Berkeley:

Space used	<u>Waste</u>
775.2	0%
828.7	6.9%
866.5	11.8%
948.5	22.4%
1128.3	45.6%
	<u>Space used</u> 775.2 828.7 866.5 948.5 1128.3

- The presence of small files kills the performance for large files!
 - Want big blocks to reduce the seek overhead for big files
 - But... big blocks increase fragmentation for small files

Evolution of UNIX Disk Management (cont.)

■ In Berkeley BSD 4.2 UNIX: (cont.)

5

7

- Block size was changed to 4096 bytes
 - Reduced fragmentation as follows:
 - Each disk block can be used in its entirety, or can be broken up into 2, 4, or 8 *fragments*
 - For most of the blocks in the file, use the full block
 - For the last block in the file, use as small a fragment as possible
 - Can get as many as 8 very small files in one disk block
 - This change resulted in
 - Only as much fragmentation as a 1KB block size (w/ 4 fragments)
 - Data transfer rates that were 47% of the maximum rate
- Other improvements:
 - Bit map instead of unordered free list (easier to keep files contiguous)
 - Variable length file names, symbolic links
 - File locking, disk quotas

Evolution of UNIX Disk Management (cont.)

- In Berkeley BSD 4.2 UNIX:
 - See "A Fast File System for UNIX" on class home page for details
 - Introduced concept of a cylinder group

A cylinder is the set of corresponding tracks on all the disk surfaces

- For a given head position, it's just as easy to access one track in the cylinder as it is to access any other
- A cylinder group is a set of adjacent cylinders
- Each cylinder group has a copy of super block, bit map of free blocks, ilist, and blocks for storing directories and files
- The OS tries to put related information together into the same cylinder group
 - Try to put all inodes in a directory in the same cylinder group
 - Try to put blocks for one file contiguously in the same cylinder group
 - » Bitmap of free blocks makes this easy
 - For long files, redirect each megabyte to a new cylinder group

Fall 2002, Lecture 33

Improving Performance with Good Block Management

- OS usually keeps track of free blocks on the disk using a *bit map*
 - A bit map is just an array of bits
 - 1 means the block is free,
 - 0 means the block is allocated to a file
 - For a 12 GB drive, there are about 3,070,000 4KB blocks, so a bit map takes up 384 KB (usually kept in memory)
- Try to allocate the next block of the file close to the previous block
 - Works well if disk isn't full
 - If disk is full, this is doesn't work well
 - Solution keep some space (about 10% of the disk) in reserve, and don't tell users; never let disk get more than 90% full
 - With multiple platters / surfaces, there are many possibilities (one surface is as good as another), so the block can usually be allocated close to the previous one