
1 Fall 2002, Lecture 33

Disk Hardware

Diagram from Computer Science, Volume 2, J. Stanley Warford, Heath, 1991.

� Seek time — time required to position
heads over the track / cylinder

● Typically 10 ms to cross entire disk

� Rotational delay — time required for
sector to rotate underneath the head

● 7200 RPM = 7200 rotations / minute =
120 rotations / second = 8 ms / rotation

2 Fall 2002, Lecture 33

Disk Access Times

� Typical numbers:

● 32-64 sectors per track

● 1K bytes per sector

� Data transfer rate is number of bytes
rotating under the head per second

● 1 KB / sector * 32 sectors / rotation *
120 rotations / second = 4 MB / s

� Disk I/O time =
seek + rotational delay + transfer

● If head is at a random place on the disk
� Avg. seek time is 5 ms

� Avg. rotational delay is 4 ms

� Data transfer rate for a 1KB is 0.25 ms
� I/O time = 9.25 ms for 1KB

�Real transfer rate is roughly 100 KB / s

● In contrast, memory access may be 20
MB / s (200 times faster)

3 Fall 2002, Lecture 33

Selecting the Sector Size

� The read / write head needs to
synchronize with the head as it rotates

● Need 100-1000 bits between each sector
to measure how fast disk is spinning

� If sector size is 1 byte

● Only 1% of disk holds useful data

● 1/1000 transfer rate as before = 100 B / s

� If sector size is 1 KB

● 90% of disk holds useful data

● Transfer rate is 100 KB / s

� If sector size is 1 MB

● Almost all of disk holds useful data

● Transfer rate is 4 MB / s (full disk transfer
rate — seek and rotational latency usually
won’t matter anymore)

4 Fall 2002, Lecture 33

Evolution of UNIX Disk Management

� In traditional UNIX, and Berkeley BSD
3.0 UNIX

● Disk block size was 512 bytes

� In Berkeley BSD 4.0 UNIX:

● Block size was changed to 1024 bytes

● More or less doubled performance
� Each block access fetched twice as much

data, so there was less disk seek
overhead

� More files could use only the direct block
of the inode, which saved further space

● When file system was first created
� Free list was ordered, and they got

transfer rates up to 175 KB / s

� After a few weeks, data and free blocks
got so randomized that the transfer rate
went down to 30 KB / s

� This was less than 4% of the maximum
transfer rate!

5 Fall 2002, Lecture 33

Evolution of UNIX Disk Management
(cont.)

� What about making the blocks bigger?

● Causes internal fragmentation

● Most files are small, maybe one block

� Some measurements from a file system
at UC Berkeley:

Organization Space used Waste

Data only 775.2 0%
+inodes, 512B block 828.7 6.9%
+inodes, 1KB block 866.5 11.8%
+inodes, 2KB block 948.5 22.4%
+inodes, 4KB block 1128.3 45.6%

� The presence of small files kills the
performance for large files!

● Want big blocks to reduce the seek
overhead for big files

● But… big blocks increase fragmentation
for small files

6 Fall 2002, Lecture 33

Evolution of UNIX Disk Management
(cont.)

� In Berkeley BSD 4.2 UNIX:

● See “A Fast File System for UNIX” on
class home page for details

● Introduced concept of a cylinder group
� A cylinder is the set of corresponding

tracks on all the disk surfaces
– For a given head position, it’s just as easy

to access one track in the cylinder as it is
to access any other

– A cylinder group is a set of adjacent
cylinders

� Each cylinder group has a copy of super
block, bit map of free blocks, ilist, and
blocks for storing directories and files

� The OS tries to put related information
together into the same cylinder group

– Try to put all inodes in a directory in the
same cylinder group

– Try to put blocks for one file contiguously
in the same cylinder group

» Bitmap of free blocks makes this easy
– For long files, redirect each megabyte to a

new cylinder group

7 Fall 2002, Lecture 33

Evolution of UNIX Disk Management
(cont.)

� In Berkeley BSD 4.2 UNIX: (cont.)

● Block size was changed to 4096 bytes
� Reduced fragmentation as follows:

– Each disk block can be used in its entirety,
or can be broken up into 2, 4, or 8
fragments

– For most of the blocks in the file, use the
full block

– For the last block in the file, use as small a
fragment as possible

– Can get as many as 8 very small files in
one disk block

� This change resulted in
– Only as much fragmentation as a 1KB

block size (w/ 4 fragments)

– Data transfer rates that were 47% of the
maximum rate

● Other improvements:
� Bit map instead of unordered free list

(easier to keep files contiguous)

� Variable length file names, symbolic links

� File locking, disk quotas

8 Fall 2002, Lecture 33

Improving Performance with
Good Block Management

� OS usually keeps track of free blocks on
the disk using a bit map

● A bit map is just an array of bits
� 1 means the block is free,

� 0 means the block is allocated to a file

● For a 12 GB drive, there are about
3,070,000 4KB blocks, so a bit map takes
up 384 KB (usually kept in memory)

� Try to allocate the next block of the file
close to the previous block

● Works well if disk isn’t full

● If disk is full, this is doesn’t work well
� Solution — keep some space (about 10%

of the disk) in reserve, and don’t tell users;
never let disk get more than 90% full

� With multiple platters / surfaces, there are
many possibilities (one surface is as good
as another), so the block can usually be
allocated close to the previous one

