
1 Fall 2002, Lecture 34

Improving Disk Performance

� Keep some structures in memory

● Active inodes, file tables

� Efficient free space management

● Bitmaps

� Careful allocation of disk blocks

● Contiguous allocation where possible

● Direct / indirect blocks

● Good choice of block size

● Cylinder groups

● Keep some disk space in reserve

� Disk management

● Cache of disk blocks

● Disk scheduling

2 Fall 2002, Lecture 34

Improving Performance
Using a Disk Cache

� Have OS (not hardware) manage a disk
block cache to improve performance

● Use part of main memory as a cache

● When OS reads a file from disk, it copies
those blocks into the cache

● Before OS reads a file from disk, it first
checks the cache to see if any of the
blocks are there (if so, uses cached copy)

� Replacement policies for the blocks:

● Same options as paging
� FIFO, LRU using clock / second chance

● Easy to implement exact LRU
� OS just records time along with everything

else it has to update when a block is read

● But — sequential access degrades LRU
� Solution: free-behind policy for large

sequentially-accessed files — as block is
read, remove previous one from cache

3 Fall 2002, Lecture 34

Improving Performance with
Disk Head Scheduling

� Permute the order of the disk requests

● From the order that they arrive in

● Into an order that reduces the distance of
seeks

� Examples:

● Head just moved from lower-numbered
track to get to track 30

● Request queue: 61, 40, 18, 78

� Algorithms:

● First-come first-served (FCFS)

● Shortest Seek Time First (SSTF)

● SCAN (0 to 100, 100 to 0, …)

● C-SCAN (0 to 100, 0 to 100, …)

4 Fall 2002, Lecture 34

Disk Head Scheduling (cont.)

� FCFS (used in Nachos)

● Handle in order of arrival

� SSTF

● Select request that requires the smallest
seek from current track

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

5 Fall 2002, Lecture 34

Disk Head Scheduling (cont.)

� SCAN (Elevator algorithm)

● Move the head 0 to 100, 100 to 0, picking
up requests as it goes

� LOOK (variation on SCAN)

● Don’t go to end unless necessary

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

6 Fall 2002, Lecture 34

Disk Head Scheduling (cont.)

� C-SCAN (Circular SCAN)

● Move the head 0 to 100, picking up
requests as it goes, then big seek to 0

� C-LOOK (variation on C-SCAN)

● Don’t go to end unless necessary

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

7 Fall 2002, Lecture 34

Comparison of
Disk Head Scheduling Methods

� SSTF is common and has a natural
appeal

� SCAN and C-SCAN perform better for
systems that place a heavy load on the
disk

� Performance depends on the number
and types of requests

� Requests for disk service can be
influenced by the file-allocation method.

� The disk-scheduling algorithm should be
written as a separate module of the
operating system, allowing it to be
replaced as necessary

� Either SSTF or LOOK is a reasonable
choice for the default algorithm

8 Fall 2002, Lecture 34

Disk Management

� Disk formatting

● Physical formatting — dividing disk into
sectors: header, data area, trailer

● Most disks are preformatted, although
special utilities can reformat them

● After formatting, must partition the disk,
then write the data structures for the file
system (logical formatting)

� Boot block contains the “bootstrap”
program for the computer

● System also contains a ROM with a
bootstrap loader that loads this program

� Disk system should ignore bad blocks

● When disk is formatted, a scan detects
bad blocks and tells disk system not to
assign those blocks to files

● Disk may also do this as disk is used

9 Fall 2002, Lecture 34

Disk Management (cont.)

� Swap space management

● Swap space in normal file system

● Swap space in separate partition
� One big file — don’t need whole file system,

directories, etc.

� Only need manager to allocate/deallocate
blocks (optimized for speed)

� Disk reliability

● Data normally assumed to be persistent

● Disk striping — data broken into blocks,
successive blocks stored on separate
drives

● Mirroring — keep a “shadow” or “mirror”
copy of the entire disk

● Stable storage — data is never lost during
an update — maintain two physical blocks
for each logical block, and both must be
same for a write to be successful

