
1

CS 4/53201 Project #2 Operating Systems

Due via email by 11:59pm on Friday 1 November 2002

Introduction

In this assignment, you are given a working thread system, which is part of Nachos; your job is to explore the
use of threads, semaphores, and locks, and to use them to solve a couple of synchronization problems. This project
will comprise 15% of your final course grade.

Reading the Nachos Source Code

The first step in this project is to prepare for the assigned problems by reading some of the Nachos source code.
Most of this code should be familiar to you from Project 1, while only a small amount of code is new. As in
Project 1, I suggest that you read the files in the order described below, and as you do so, read the corresponding
sections in Archna Kalra’s “Salsa — An Operating Systems Tutorial” and Thomas Narten’s “A Road Map Through
Nachos”.

For Project 1, you read through the following code. For this project, you might want to read through it once
again, while thinking primarily about how it handles threads.

• threads/main.cc, threads/threadtest.cc — a simple test of the thread routines.

• threads/system.h, threads/system.cc — Nachos startup/shutdown routines.

• threads/thread.h, threads/thread.cc — thread data structures and thread operations such as thread fork,
thread sleep and thread finish.

• threads/scheduler.h, threads/scheduler.cc — manages the list of threads that are ready to run.

• threads/switch.h, threads/switch.s — assembly language magic for starting up threads and context
switching between them. Don’t worry if you don’t understand these two files — you are not responsible for
understanding them.

• threads/list.h, threads/list.cc — generic list management.

• threads/utility.h, threads/utility.cc — some useful definitions and debugging routines.

After re-familiarizing yourself with the code above, read through the following files to see how Nachos
implements semaphores. Note that the structure for locks and condition variables is in place, but the code to
implement them is missing. You might also want to review the material in Lectures 12 and 13 describing how
semaphores and locks are implemented.

• threads/synch.h, threads/synch.cc — synchronization routines: semaphores, locks, and condition
variables.

Finally, read through the following files to see how Nachos puts semaphores to a practical use.

• threads/synchlist.h, threads/synchlist.cc — synchronized access to lists using locks and condition
variables (useful as an example of the use of synchronization primitives).

Tracing Through and Debugging Nachos Source Code

The first step in this project is to read and understand the thread system in Nachos, which implements thread fork,
thread completion, and semaphores for synchronization. To copy the necessary files and compile Nachos, see the
Project 1 instructions on the course home page entitled “How to get an early start.” Run the resulting program
“nachos” in the thread directory for a simple test of the code. Trace the execution path (as in the Project 1
assigment) for the simple test case provided. As you do this project, don’t forget about the gdb debugger and the
Nachos DEBUG function (particularly the “t”, “i”, and “m” flags).

Writing Properly Synchronized Code

Part of the goal of this project is to learn how to write code that synchronizes multiple threads, which may be
important in later projects since all threads share a common address space in Nachos. Note that properly
synchronized code should work no matter what order the scheduler chooses to run the threads on the ready list. In

2

other words, the TA or I should be able to put a call to Thread::Yield (causing the scheduler to choose another thread
to run) anywhere in your code where interrupts are enabled without changing the correctness of your code.

Identifying Your Changes

So that the TA and I can easily identify which code you have changed or added, surround all changes and additions
in your code by comments in the following form:

// PROJECT 2 CHANGES START HERE

<your changed code goes here>

// PROJECT 2 CHANGES END HERE

Use your own judgment about how much code to surround in a single comment.

The Problems

1. (30 points) In the file threads/threadtest.cc, write a function TestList with the functionality described below.
Modify threads/main.cc so that if Nachos is called with the “–tt” command line option, ThreadTest is called,
while if Nachos is called with the “–tl” command line option, TestList is called.

Your function TestList should fork two threads named Bee and Buzz. Bee should loop 10 times, printing out a
single character ‘b’ each time using a printf statement. Similarly, Buzz should loop 10 times, printing out a
single character ‘B’ each time using a printf statement.

After writing this code, in a file called proj2.prob1, do the following:

a. Include a sample run to demonstrate that everything you implemented works.

b. Run Nachos using the “t”, “i”, and “m” debugging flags, and explain briefly what is happening (don’t include
the program output as it’ll be too long—just explain what’s happening).

c. If you insert calls to Thread::Yield inside Bee so that it yields after printing each ‘b’, and add similar calls
inside Buzz, does the output change? If so, show the new output, and explain why it changes (you might
want to use the debugging flags again to figure this out). If not, explain why it doesn’t change. (Note —
after you add these Yields, comment them out when you email the code to the TA.)

d. If you did not complete this problem, clearly describe what you have done, what is not working, and how you
would go about finishing the problem if you had more time.

2. (30 points) Modify your solution to problem 1 above so that the loops in Bee and Buzz are protected by
semaphores (i.e., so that the loops are mutually-exclusive critical sections).

After writing this code, in a file called proj2.prob2, do the following:

a. Include a sample run to demonstrate that everything you implemented works.

b. Run Nachos using the “t”, “i”, and “m” debugging flags, and explain briefly what is happening (don’t include
the program output as it’ll be too long—just explain what’s happening).

c. If you insert calls to Thread::Yield inside Bee so that it yields after printing each ‘b’, and add similar calls
inside Buzz, does the output change? If so, show the new output, and explain why it changes (you might
want to use the debugging flags again to figure this out). If not, explain why it doesn’t change. (Note —
after you add these Yields, comment them out when you email the code to the TA.)

d. If you did not complete this problem, clearly describe what you have done, what is not working, and how you
would go about finishing the problem if you had more time.

3. (40 points) Implement the Coke Machine as described at the end of Lecture 11. In the file
threads/threadtest.cc, write a function CokeMachine with this functionality, and then modify
threads/main.cc so that if Nachos is called with the “–tc” command line option, CokeMachine is called. Note
that you may have to add some additional code to that provided in the lecture to produce interesting output, etc.

After writing this code, in a file called proj2.prob3, do the following:

a. Include a sample run to demonstrate that everything you implemented works.

b. If you did not complete this problem, clearly describe what you have done, what is not working, and how you
would go about finishing the problem if you had more time.

3

Where to Get Help

Help is available from Prof. Walker and from the TA (Mr. Qingzhao Guo):

• For questions on what the assignment is asking, please contact Prof. Walker.

• For questions on Nachos, please contact either the TA or Prof. Walker.

• For help with your code or debugging, please contact the TA.

Our office hours are on the class web page, and may be extended if necessary as the project deadline approaches; see
the class web page for any announcements of extended office hours.

Also, if there are corrections or amplifications to this project, or if someone asks a question and we feel the
answer may be relevant to other people, that information will be posted on the course home page under the project
assignment. Thus, you might want to check the course home page periodically until the project due date to avoid
getting bogged down in some problem to which a solution has been announced.

Cooperation versus Cheating

See the class syllabus, and contact me if you have any questions. For this project, you are allowed to study the
Nachos source code with your friends, but you are n o t allowed to work with anyone else to actually solve the
problems, and you are certainly n o t allowed to copy anyone else’s solution.

Submitting Your Project

When you finish, submit the files proj2.prob1, proj2.prob2, main.cc, threadtest.cc, and any other files
that your modified to the TA for grading by typing the following commands in the threads directory:

shar proj2.prob1 proj2.prob2 proj2.prob3 main.cc
 threadtest.cc >shar.out (type all this on one line)

elm -s “Project 2 for Your Name Here” qguo@cs.kent.edu <shar.out

rm shar.out

The first line puts your files into a single file called shar.out, and the second line emails that file to the TA
(replace “Your Name Here” with your own name).

Important warning — once you submit your files, DON’T TOUCH THEM AGAIN — if your email
didn’t reach the TA, or something happens, the TA may need to ask you to resubmit your files. However, before he
lets you do so, he will ask you to log on in her presence, and he will check the modification dates on your files to
make sure that they haven’t been modified after the due date (if they have been, you will be assessed the appropriate
late penalties).

The project is due at 11:59pm on Friday 1 November 2002. For a discussion of my late policy, see the course
syllabus.

