CS 33211 Homework #1 oS

Due in class at 12:30pm on Monday 24 September 2007
typed answers preferred

1. How does the use of interrupts permit more efficient usage of the CPU during I/0 than
software polling?
(Note that I am not asking for a complete description of “interrupts” and “software
polling”.)

With software polling, the CPU has to continuously check to see if the I/O has finished,
which prevents it from doing useful work during the I/O operation. With interrupts, the CPU
can start an I/O operation and then do something useful until the I/O operation finishes.

2. What is the relationship between high-level language statements such as “printf()”,
APIs, and system calls?
(Note that I am not asking for a complete description of “APIs” and “system calls”.)

A high-level language statement may be implemented by multiple lower-level API functions,
each of which may be implemented by multiple lower-level system calls. Further, a high-
level language statement should work on any operating system or CPU, while an API
function is limited to a specific class of operating systems (e.g., a POSIX API function
supported by most versions of UNIX), and a system call is limited to a very specific
operating system (e.g., Windows XP). A programmer needs to know the high-level language
statements available, may not need to know the API functions available, and rarely needs to
know the system calls available.

3. In what ways has the definition of OS ‘kernel” changed over time?
In what ways has the definition remained the same?
(Note that simply defining “OS kernel” for two or three different systems does not answer
the questions asked.)

The OS “kernel” has generally referred to the software above the hardware level that runs in
kernel / protected mode.

When kernels grew too large to be easily managed, a lot of the functionality that did not need
to directly access the hardware, such as the CPU scheduler and file system implementation,
was moved into user-mode processes, resulting in a smaller “micro”-kernel.

4. In the UNIX process model, there are two ‘““asleep’ states and two “ready to run’ states.
How might it be useful to make this distinction?

In both of these cases, one of the states corresponds to a process in memory, and one
corresponds to a process that has been swapped out to disk. Processes swapped out have to
1

be moved back into memory before they can be scheduled onto the CPU. A large number of
ready to run processes swapped out indicates a lack of memory that can hamper performance.

What is the relationship between blocking send and receive operations and the five-
state process model?

When a blocking send or receive operation blocks, the process moves from the running state
to the blocked / waiting state. In the case of a send operation, it stays in that state until the
data is received. In the case of a receive operation, it stays in that state until some data is
received. Once that awaited event occurs, the process moves to the ready state.

