
1 Fall 2007, Chapter 01

Why Study Operating Systems?

! Abstraction — how do you give the users

the illusion of infinite resources (CPU

time, memory, file space)?

! System design —tradeoffs between:

! performance and convenience of these
abstractions

! performance and simplicity of OS

! functionality in hardware or software

! Primary intersection point — OS is the

point where hardware, software,

programming languages, data structures,

and algorithms all come together

! Curiosity — “look under the hood”

! “Operating systems are among the most

complex pieces of software yet

developed”, William Stallings, 1994
2 Fall 2007, Chapter 01

The Operating System (OS) in Context

! Components of a Computer System

! Hardware – provides basic computing
resources (CPU, memory, I/O devices)

! Operating system – controls and
coordinates the use of the hardware
among the various application programs
for the various users

! Applications programs – define the ways
in which the system resources are used
to solve the computing problems of the
users (compilers,
databases,
video
games,
business
programs)

! Users
(people,
machines,
computers)

3 Fall 2007, Chapter 01

What is an Operating System?

! An operating system (OS) is the interface

between the user and the hardware

! It implements a virtual machine that is
easier to program than bare hardware

! An OS provides standard services
(functionality) which are implemented on
the hardware, including:

! Processes, CPU scheduling, memory
management, file system, networking

! The OS coordinates multiple

applications and users (multiple

processes) in a fair and efficient manner

"The goal in OS development is to make

the machine both convenient to use (a

software engineering problem) as well as

efficient (a system and engineering
problem)

4 Fall 2007, Chapter 01

Modern OS Functionality

! Textbook talks about OS as a:

! Control program — manages the
execution of user programs, prevents
errors and improper use of the computer

! Resource allocator — CPU time, memory
space, file space, I/O devices

! OS must provide:

! Processes & CPU scheduling

! Multiple processes active concurrently

! Processes may need to communicate

! Processes may require mutually-exclusive

access to some resource

! Memory management — must allocate
memory to processes, move processes
between disk and memory

! File system — must allocate space for
storage of programs and data on disk

5 Fall 2007, Chapter 01

History of Operating Systems

! Phase 0 — hardware is a very expensive

experiment; no operating systems exist

1. One user at console

! One function at a time (computation, I/O,

user think/response)

! Program loaded via card deck

– Libraries of device drivers (for I/O)

! User debugs at console

! Phase 1 — hardware is expensive,
humans are cheap

2. Simple batch processing: load program,
run, print results, dump, repeat

! User gives program (cards or tape) to the

operator, who schedules the jobs

! Resident monitor automatically loads,

runs, dumps user jobs

! Requires memory management

(relocation) and protection

! More efficient use of hardware, but

debugging is more difficult (from dumps)
6 Fall 2007, Chapter 01

History of Operating Systems (cont.)

! Phase 1 — hardware is expensive,

humans are cheap

3. Overlapped CPU & I/O operations

! First: buffer slow I/O onto fast tape drives

connected to CPU, replicate I/O devices

! Later: spool data to disk

4. Multiprogrammed batch systems

! Multiple jobs are on the disk,waiting to run

! Multiprogramming — run several

programs at the “same” time

– Pick some jobs to run (scheduling), and

put them in memory (memory
management)

– Run one job; when it waits on something

(tape to be mounted, key to be pressed),

switch to another job in memory

! First big failures:

– MULTICS announced in 1963, not

released until 1969

– IBM"s OS/360 released with 1000 known

bugs

! OS design should be a science, not an art

7 Fall 2007, Chapter 01

History of Operating Systems (cont.)

! Phase 2 — hardware is less expensive

than before, humans are expensive

5. Interactive timesharing

! Lots of cheap terminals, one computer

– All users interact with system at once

– Debugging is much easier

! Disks are cheap, so put programs and

data online

– 1 punch card = 100 bytes

– 1MB = 10K cards

– OS/360 was several feet of cards

! New problems:

– Need preemptive scheduling to maintain

adequate response time

– Need to avoid thrashing (swapping

programs in and out of memory too often)

– Need to provide adequate security

measures

! Success: UNIX developed at Bell Labs so

a couple of computer nerds (Thompson,

Ritchie) could play Star Trek on an

unused PDP-7 minicomputer

8 Fall 2007, Chapter 01

History of Operating Systems (cont.)

! Phase 3 — hardware is cheap,

humans are expensive

6. Personal computing

! CPUs are cheap enough to put one in

each terminal, yet powerful enough to be

useful

– !Computers for the masses!

! Return to simplicity; make OS simpler by

getting rid of support for

multiprogramming, concurrency, and

protection

7. Parallel systems

! User multiple CPUs with a shared memory

in close communication

– !Increased throughput

! Mostly MIMD hardware, some SIMD

! Symmetric multiprocessing (SMP)

– Each processor runs an identical copy of

the OS, multiple processes running at

once

9 Fall 2007, Chapter 01

History of Operating Systems (cont.)

! Phase 4 — hardware is cheap,

ubiquitous, and pervasive

6. Distributed systems

! Distribute the computation among several

(possibly different) physical processors,

each with its own memory, in loose

communication

– !Resource sharing

– Increased throughput

– Reliability

! Client-server computing

– Server provides specified services (e.g.,

file service, directory service, print service)

to a set of clients

7. Embedded / handheld systems

! PDAs, cell phones, CD players, etc.

! Small OS “footprint” (limited memory)

! Slow processors

! Small displays

! Power consumption is a primary

consideration

10 Fall 2007, Chapter 01

Input / Output (I/O)

! CPU and device controllers all use a

common bus for communication

! Software-polling synchronous I/O

! CPU starts an I/O operation, and
continuously polls (checks) that device
until the I/O operation finishes

! Device controller contains registers for
communication with that device

! Input register, output register — for data

! Control register — to tell it what to do

! Status register — to see what it"s done

! Why not connect all I/O devices directly to
CPU? Why not… memory…?

CPU
Disk

Controller

Printer

Controller

Tape Drive

Controller

Memory

Controller

11 Fall 2007, Chapter 01

Input / Output (I/O)
(cont.)

! Terminology

! Synchronous I/O — CPU execution waits
while I/O proceeds

! Asynchronous I/O — I/O proceeds
concurrently with CPU execution

! Interrupt-based asynchronous I/O

! Device controller has its own processor,
and executes asynchronously with CPU

! Device controller puts an interrupt signal

on the bus when it needs CPU"s attention

! When CPU receives an interrupt:

1. It saves the CPU state and invokes the

appropriate interrupt handler using the

interrupt vector (addresses of OS

routines to handle various events)

2. Handler must save and restore software

state (e.g., registers it will modify)

3. CPU restores CPU state

12 Fall 2007, Chapter 01

Input / Output (I/O)
(cont.)

! Memory-mapped I/O

! Uses direct memory access (DMA) — I/O
device can transfer block of data to / from
memory without going through CPU

! OS allocates buffer in memory, tells I/O
device to use that buffer

! I/O device operates asynchronously with
CPU, interrupts CPU when finished

! Used for most high-speed I/O devices
(e.g., disks, communication interfaces)

CPU I/O device

memory

I/O commands

datadata

13 Fall 2007, Chapter 01

Storage Structures

! At a given level, memory may not be as

big or as fast as you"d like it be

! Tradeoffs between size and speed

! Principle of Locality of Reference leads

to caching

! When info is needed, look on this level

! If it"s not on this level, get it from the next
slower level, and save a copy here in
case it"s needed again sometime soon

Registers

Level 1 Cache

Level 2 Cache

Disk (Virtual Memory)

Disk (File System)

FAST

SLOW

SMALL

LARGEBackup Tape

Main Memory

14 Fall 2007, Chapter 01

Magnetic Disks

! Provide secondary storage for system

(after main memory)

! Technology

! Covered with magnetic material

! Read / write head “floats” just above
surface of disk

! Hierarchically organized as platters,
tracks, sectors (blocks)

! Devices

! Hard (moving-head) disk — one or more
platters, head moves across tracks

! Floppy disk — disk covered with hard
surface, read / write head sits on disk,
slower, smaller, removable, rugged

! CDROM — uses laser, read-only, high-
density

! Optical —read / write

15 Fall 2007, Chapter 01

Protection

! Multiprogramming and timesharing

require that the memory and I/O of the

OS and user processes be protected

against each other

! Note that most PCs do not support this
kind of protection

! Provide protection via two modes of CPU

execution: user mode and kernel mode

! In kernel / privileged / supervisor / monitor
mode, privileged instructions can:

! Access I/O devices, control interrupts

! Manipulate the state of the memory (page

table, TLB, etc.)

! Halt the machine

! Change the mode

! Requires architectural support:

! Mode bit in a protected register

! Privileged instructions, which can only be

executed in kernel mode
16 Fall 2007, Chapter 01

I/O Protection

! To prevent illegal I/O, or simultaneous

I/O requests from multiple processes,

perform all I/O via privileged instructions

! User programs must make a system call
to the OS to perform I/O

! When user process makes a system call:

! A trap (software-generated interrupt)
occurs, which causes:

! The appropriate trap handler to be

invoked using the trap vector

! Kernel mode to be set

! Trap handler:

! Saves state

! Performs requested I/O (if appropriate)

! Restores state, sets user mode, and

returns to calling program

17 Fall 2007, Chapter 01

Memory Protection

! Must protect OS"s memory from user

programs (can"t overwrite, can"t access)

! Must protect memory of one process from
another process

! Must not protect memory of user process
from OS

! Simplest and most common technique:

! Base register —smallest legal address

! Limit register — size of address range

! Base and limit registers are loaded by OS
before running a particular process

! CPU checks each address (instruction &
data) generated in user mode

! Any attempt to access memory outside

the legal range results in a trap to the OS

! Additional hardware support is provided

for virtual memory
18 Fall 2007, Chapter 01

CPU Protection

! Use a timer to prevent CPU from being

hogged by one process (either

maliciously, or due to an infinite loop)

! Set timer to interrupt OS after a specified
period (small fraction of a second)

! When interrupt occurs, control transfers
to OS, which decides which process to
execute for next time interval (maybe the
same process, maybe another one)

! Also use timer to implement time sharing

! At end of each time interval, OS switches
to another process

! Context switch!= save state of that
process, update Process Control Block
for each of the two processes, restore
state of next process

19 Fall 2007, Chapter 01

Computer Architecture & OS

! Need for OS services often drives

inclusion of architectural features in CPU:

OS Service Hardware Support

I/O interrupts
memory-mapped I/O
caching

Data access memory hierarchies
file systems

Protection system calls
kernel & user mode
privileged instructions
interrupts & traps
base & limit registers

Scheduling & timers
Error recovery

