
1 Fall 2007, Chapter 3

Process

! A process (sometimes called a task, or a

job) is, informally, a program in execution

! “Process” is not the same as “program”

! We distinguish between a passive
program stored on disk, and an actively
executing process

! Multiple people can run the same

program; each running copy corresponds

to a distinct process

! The program is only part of a process; the
process also contains the execution state

! List processes (HP UNIX):

! ps — my processes, little detail

! ps -fl — my processes, more detail

! ps -efl — all processes, more detail

! Note user processes and OS processes

2 Fall 2007, Chapter 3

Process Creation / Termination

! Reasons for process creation

! User logs on

! User starts a program

! OS creates process to provide a service
(e.g., printer daemon to manage printer)

! Program starts another process (e.g.,
netscape calls xv to display a picture)

! Reasons for process termination

! Normal completion

! Arithmetic error, or data misuse (e.g.,
wrong type)

! Invalid instruction execution

! Insufficient memory available, or memory
bounds violation

! Resource protection error

! I/O failure

3 Fall 2007, Chapter 3

Process Execution

! Conceptual model of 4 processes

executing:

! Actual interleaved execution of the 4
processes:

process A
process B
process C
process A
process B
process C
process A
process C
process A
process D
process C
process D
process C

time
(one Program Counter)

4 Fall 2007, Chapter 3

A Two-State Process Model

! This process model says that either a

process is running, or it is not running

! State transition diagram:

! Queuing diagram:

! CPU scheduling (round-robin)

! Queue is first-in, first-out (FIFO) list

! CPU scheduler takes process at head of
queue, runs it on CPU for one time slice,
then puts it back at tail of queue

not
running

running
enter

dispatch

pause

exit

CPU
enter dispatch

pause

exit
queue

5 Fall 2007, Chapter 3

Process Transitions in
the Two-State Process Model

! When the OS creates a new process, it is

initially placed in the not-running state

! It!s waiting for an opportunity to execute

! At the end of each time slice, the CPU
scheduler selects a new process to run

! The previously running process is paused
— moved from the running state into the
not-running state (at tail of queue)

! The new process (at head of queue) is
dispatched — moved from the not-
running state into the running state

! If the running process completes its

execution, it exits, and the CPU scheduler

is invoked again

! If it doesn!t complete, but its time is up, it

gets moved into the not-running state

anyway, and the CPU scheduler chooses

a new process to execute

6 Fall 2007, Chapter 3

Waiting on Something to Happen…

! Some reasons why a process that might

otherwise be running needs to wait:

! Wait for user to type the next key

! Wait for output to appear on the screen

! Program tried to read a file — wait while
OS decides which disk blocks to read,
and then actually reads the requested
information into memory

! Netscape tries to follow a link (URL) —
wait while OS determines address,
requests data, reads packets, displays
requested web page

! OS must distinguish between:

! Processes that are ready to run and are
waiting their turn for another time slice

! Processes that are waiting for something
to happen (OS operation, hardware
event, etc.)

7 Fall 2007, Chapter 3

A Five-State Process Model

! The not-running state in the two-state

model has now been split into a ready
state and a blocked state

! Running — currently being executed

! Ready — prepared to execute

! Blocked — waiting for some event to
occur (for an I/O operation to complete, or
a resource to become available, etc.)

! New — just been created

! Exit — just been terminated

! State transition diagram:

ready running
admit

dispatch

timeout

release
new exit

blocked

event
wait

event
occurs

8 Fall 2007, Chapter 3

State Transitions in Five-State
Process Model

! new ! ready

! Admitted to ready queue; can now be
considered by CPU scheduler

! ready ! running

! CPU scheduler chooses that process to
execute next, according to some
scheduling algorithm

! running ! ready

! Process has used up its current time slice

! running ! blocked

! Process is waiting for some event to
occur (for I/O operation to complete, etc.)

! blocked ! ready

! Whatever event the process was waiting
on has occurred

9 Fall 2007, Chapter 3

Process State

! The process state consists of (at least):

! Code for the program

! Program!s static and dynamic data

! Program!s procedure call stack

! Contents of general purpose registers

! Contents of Program Counter (PC)

! Contents of Stack Pointer (SP)

! Contents of Program Status Word (PSW)
— interrupt status, condition codes, etc.

! OS resources in use (e.g., memory, open
files, active I/O devices)

! Accounting information (e.g., CPU
scheduling, memory management)

"Everything necessary to resume the
process! execution if it is somehow put

aside temporarily

10 Fall 2007, Chapter 3

Process Control Block (PCB)

! For every process, the OS maintains a

Process Control Block (PCB), a data

structure that represents the process and

its state:

! Process id number

! Userid of owner

! Memory space (static, dynamic)

! Program Counter, Stack Pointer, general
purpose registers

! Process state (running, not-running, etc.)

! CPU scheduling information (e.g., priority)

! List of open files

! I/O states, I/O in progress

! Pointers into CPU scheduler!s state
queues (e.g., the waiting queue)

! …

11 Fall 2007, Chapter 3

A Five-State Process Model
(Review)

! The not-running state in the two-state

model has now been split into a ready
state and a blocked state

! Running — currently being executed

! Ready — prepared to execute

! Blocked — waiting for some event to
occur (for an I/O operation to complete, or
a resource to become available, etc.)

! New — just been created

! Exit — just been terminated

! State transition diagram:

ready running
admit

dispatch

timeout

release
new exit

blocked

event
wait

event
occurs

12 Fall 2007, Chapter 3

UNIX Process Model

Figure from Operating Systems, 2nd edition, Stallings, Prentice Hall, 1995

Original diagram from The Design of the UNIX Operating System, M.

Bach, Prentice Hall, 1986

13 Fall 2007, Chapter 3

UNIX Process Model
(cont.)

! Start in Created, go to either:

! Ready to Run, in Memory

! or Ready to Run, Swapped (Out) if there
isn!t room in memory for the new process

! Ready to Run, in Memory is basically
same state as Preempted (dotted line)

! Preempted means process was returning

to user mode, but the kernel switched to

another process instead

! When scheduled, go to either:

! User Running (if in user mode)

! or Kernel Running (if in kernel mode)

! Go from U.R. to K.R. via system call

! Go to Asleep in Memory when waiting

for some event, to RtRiM when it occurs

! Go to Sleep, Swapped if swapped out
14 Fall 2007, Chapter 3

Process Creation in UNIX

! One process can create another process,

perhaps to do some work for it

! The original process is called the parent

! The new process is called the child

! The child is an (almost) identical copy of
parent (same code, same data, etc.)

! The parent can either wait for the child to
complete, or continue executing in
parallel (concurrently) with the child

! In UNIX, a process creates a child

process using the system call fork()

! In child process, fork() returns 0

! In parent process, fork() returns process
id of new child

! Child often uses exec() to start another

completely different program

15 Fall 2007, Chapter 3

Example of UNIX Process Creation

#include <sys/types.h>

#include <stdio.h>

int a = 6; /* global (external) variable */

int main(void)

{
 int b; /* local variable */

 pid_t pid; /* process id */

 b = 88;

 printf("..before fork\n");

 pid = fork();

 if (pid == 0) { /* child */

 a++; b++;

 } else /* parent */
 wait(pid);

 printf("..after fork, a = %d, b = %d\n", a, b);

 exit(0);

}

aegis> fork

..before fork

..after fork, a = 7, b = 89

..after fork, a = 6, b = 88

16 Fall 2007, Chapter 3

Context Switching

! Stopping one process and starting

another is called a context switch

! When the OS stops a process, it stores
the hardware registers (PC, SP, etc.) and
any other state information in that
process! PCB

! When OS is ready to execute a waiting
process, it loads the hardware registers
(PC, SP, etc.) with the values stored in
the new process! PCB, and restores any
other state information

! Performing a context switch is a relatively
expensive operation

! However, time-sharing systems may do

100–1000 context switches a second

! Why so often?

! Why not more often?

17 Fall 2007, Chapter 3

Context Switching

18 Fall 2007, Chapter 3

Schedulers

! Medium-term scheduler (demand paging)

! On time-sharing systems, does some of
what long-term scheduler used to do

! May swap processes out of memory
temporarily

! May suspend and resume processes

! Goal: balance load for better throughput

! Short-term scheduler (CPU scheduler)

! Executes frequently, about one hundred
times per second (every 10ms)

! Runs whenever:

! Process is created or terminated

! Process switches from running to blocked

! Interrupt occurs

! Selects process from those that are ready
to execute, allocates CPU to that process

19 Fall 2007, Chapter 3

Ready Queue and
Various I/O Device Queues

From Operating System Concepts, Silberschatz & Galvin., Addison-Wesley, 1994

! OS organizes all waiting processes (their

PCBs, actually) into a number of queues

! Queue for ready processes

! Queue for processes waiting on each
device (e.g., mouse) or type of event
(e.g., message)

20 Fall 2007, Chapter 3

The Producer-Consumer Problem

! One process is a producer of information; another is a

consumer of that information

! Processes communicate through a bounded (fixed-

size) circular buffer

var buffer: array[0..n-1] of items; /* circular array */

in = 0
out = 0

/* producer */ /* consumer */

repeat forever repeat forever

… while (in == out)

produce item nextp do nothing
… nextc = buffer[out]

while (in+1 mod n == out) out = out+1 mod n

do nothing …

buffer[in] = nextp consume item nextc

in = in+1 mod n …
end repeat end repeat

free free full full full free free

out in

0 1 2 3 4 5 6

n = 7

21 Fall 2007, Chapter 3

Message Passing using
Send & Receive

! Blocking send:

! send(destination-process, message)

! Sends a message to another process, then
blocks (i.e., gets suspended by OS) until
message is received

! Blocking receive:

! receive(source-process, message)

! Blocks until a message is received (may
be minutes, hours, …)

! Producer-Consumer problem:

/* producer */ /* consumer */
repeat forever repeat forever

… receive(producer,nextc)

produce item nextp …

… consume item nextc

send(consumer, nextp) …

end repeat end repeat

22 Fall 2007, Chapter 3

Direct vs. Indirect Communication

! Direct communication — explicitly name

the process you!re communicating with

! send(destination-process, message)

! receive(source-process, message)

! Variation: receiver may be able to use a
“wildcard” to receive from any source

! Receiver can not distinguish between
multiple “types” of messages from sender

! Indirect communication — communicate

using mailboxes (owned by receiver)

! send(mailbox, message)

! receive(mailbox, message)

! Variation: … “wildcard” to receive from
any source into that mailbox

! Receiver can distinguish between
multiple “types” of messages from sender

! Some systems use “tags” instead of
mailboxes

23 Fall 2007, Chapter 3

Buffering

! Link may be able to temporarily queue

some messages during communication

! Zero capacity: (queue of length 0)

! Blocking send operation

! Sender must wait until receiver receives

the message — this synchronization to

exchange data is called a rendezvous

! Bounded capacity: (queue of length n)

! Blocking send operation

! If receiver!s queue is has free space, new

message is put on queue, and sender can

continue executing immediately

! If queue is full, sender must block until

space is available in the queue

! Unbounded capacity: (infinite queue)

! Non-blocking send operation

! Sender can always continue

24 Fall 2007, Chapter 3

Client / Server Model using
Message Passing

! Client / server model

! Server = process (or collection of
processes) that provides a service

! Example: name service, file service

! Client — process that uses the service

! Request / reply protocol:

! Client sends request message to server,

asking it to perform some service

! Server performs service, sends reply

message containing results or error code

client

request

reply

server

request

reply

kernelkernel

network

25 Fall 2007, Chapter 3

Remote Procedure Call (RPC)

! RPC mechanism:

! Hides message-passing I/O from the
programmer

! Looks (almost) like a procedure call —
but client invokes a procedure on a server

! RPC invocation (high-level view):

! Calling process (client) is suspended

! Parameters of procedure are passed
across network to called process (server)

! Server executes procedure

! Return parameters are sent back across
network

! Calling process resumes

! Invented by Birrell & Nelson at Xerox

PARC, described in February 1984 ACM
Transactions on Computer Systems

26 Fall 2007, Chapter 3

Client / Server Model using
Remote Procedure Calls (RPCs)

! Each RPC invocation by a client process
calls a client stub, which builds a message
and sends it to a server stub

! The server stub uses the message to
generate a local procedure call to the server

! If the local procedure call returns a value, the
server stub builds a message and sends it to
the client stub, which receives it and returns
the result(s) to the client

client

call

return

server

call

return

kernelkernel

network

client
stub

pack
parameters

unpack
results

unpack
parameters

pack
results

server
stub

27 Fall 2007, Chapter 3

Remote Method Invocation (RMI)

! RMI mechanism:

! A Java mechanism similar to RPCs

! Allows a Java program on one machine
to invoke a method on a remote object

! Client stub creates a parcel, sends to
skeleton on the server side

