1

Process

m A process (sometimes called a fask, or a
Job) is, informally, a program in execution

m “Process” is not the same as “program”

® We distinguish between a passive
program stored on disk, and an actively
executing process
m Multiple people can run the same
program; each running copy corresponds
to a distinct process

® The program is only part of a process; the
process also contains the execution state

m List processes (HP UNIX):

® ps — my processes, little detalil
® ps -l — my processes, more detail
® ps -efl — all processes, more detail

m Note user processes and OS processes

Fall 2007, Chapter 3

Process Creation / Termination

m Reasons for process creation
® User logs on
® User starts a program

® OS creates process to provide a service
(e.g., printer daemon to manage printer)

® Program starts another process (e.g.,
netscape calls xv to display a picture)

m Reasons for process termination
® Normal completion

® Arithmetic error, or data misuse (e.g.,
wrong type)

@ Invalid instruction execution

@ Insufficient memory available, or memory
bounds violation

® Resource protection error

@ /O failure

Fall 2007, Chapter 3

Process Execution

m Conceptual model of 4 processes
executing:

(one Program Counter per process) time

process process process
A B C

process
D

m Actual interleaved execution of the 4
processes:

(one Program Counter) time

process A
process B
process C
process A
process B
process C
process A
process C
process A
process D
process C
process D
process C

Fall 2007, Chapter 3

A Two-State Process Model

m This process model says that either a
process is running, or it is not running

m State transition diagram:

dispatch
enter ‘ ‘ exit
x 7

pause

m Queuing diagram:

ueue
enter IIII dispatch @ exit

pause

m CPU scheduling (round-robin)
® Queue is first-in, first-out (FIFO) list

® CPU scheduler takes process at head of
gueue, runs it on CPU for one time slice,
then puts it back at tail of queue

Fall 2007, Chapter 3

Process Transitions in
the Two-State Process Model

m When the OS creates a new process, it is
initially placed in the not-running state

@ It’s waiting for an opportunity to execute

m At the end of each time slice, the CPU
scheduler selects a new process to run

® The previously running process is paused
— moved from the running state into the
not-running state (at tail of queue)

® The new process (at head of queue) is
dispatched — moved from the not-
running state into the running state
m If the running process completes its
execution, it exits, and the CPU scheduler
is invoked again
m If it doesn’t complete, but its time is up, it
gets moved into the not-running state
anyway, and the CPU scheduler chooses
a new process to execute

5 Fall 2007, Chapter 3

Waiting on Something to Happen...

m Some reasons why a process that might
otherwise be running needs to wait:

® Wait for user to type the next key
@ Wait for output to appear on the screen

® Program tried to read a file — wait while
OS decides which disk blocks to read,
and then actually reads the requested
information into memory

® Netscape tries to follow a link (URL) —
wait while OS determines address,
requests data, reads packets, displays
requested web page

m OS must distinguish between:

® Processes that are ready to run and are
waiting their turn for another time slice

® Processes that are waiting for something
to happen (OS operation, hardware
event, etc.)

Fall 2007, Chapter 3

A Five-State Process Model

m The not-running state in the two-state
model has now been split into a ready
state and a blocked state

® Running — currently being executed
® Ready — prepared to execute

® Blocked — waiting for some event to
occur (for an 1/0 operation to complete, or
a resource to become available, etc.)

® New — just been created

® EXxit — just been terminated

m State transition diagram:

blocked

7 Fall 2007, Chapter 3

State Transitions in Five-State
Process Model
m new — ready

® Admitted to ready queue; can now be
considered by CPU scheduler

ready — running

® CPU scheduler chooses that process to
execute next, according to some
scheduling algorithm

m running — ready

® Process has used up its current time slice

m running — blocked
® Process is waiting for some event to
occur (for I/O operation to complete, etc.)
m blocked — ready

® Whatever event the process was waiting
on has occurred

Fall 2007, Chapter 3

Process State

m The process state consists of (at least):
® Code for the program
® Program’s static and dynamic data
® Program’s procedure call stack
@ Contents of general purpose registers
@ Contents of Program Counter (PC)
@ Contents of Stack Pointer (SP)

® Contents of Program Status Word (PSW)
— interrupt status, condition codes, etc.

® OS resources in use (e.g., memory, open
files, active I/O devices)

® Accounting information (e.g., CPU
scheduling, memory management)

>Everything necessary to resume the
process’ execution if it is somehow put
aside temporarily

9 Fall 2007, Chapter 3

Process Control Block (PCB)

m For every process, the OS maintains a
Process Control Block (PCB), a data
structure that represents the process and
its state:

® Process id number
® Userid of owner
® Memory space (static, dynamic)

® Program Counter, Stack Pointer, general
purpose registers

® Process state (running, not-running, etc.)
® CPU scheduling information (e.g., priority)
@ List of open files

® |/O states, I/O in progress

® Pointers into CPU scheduler’s state
queues (e.g., the waiting queue)

10 Fall 2007, Chapter 3

A Five-State Process Model
(Review)

m The not-running state in the two-state
model has now been split into a ready
state and a blocked state

® Running — currently being executed
® Ready — prepared to execute

® Blocked — waiting for some event to
occur (for an 1/0 operation to complete, or
a resource to become available, etc.)

® New — just been created

® EXxit — just been terminated

m State transition diagram:

blocked

11 Fall 2007, Chapter 3

UNIX Process Model

User Running

interrupt, sys call,

i t return interrupt
interrupt r P return

to user

preempt

Zombie reschedule Preempted
process :

"'.i(eady to Run

Created

not enough memory
(swapping system only)

wakeup
Sleep, Swapped Ready to Run,
Swapped

FIGURE 3.16 UNIX process state transition diagram [BACH86]

Figure from Operating Systems, 2nd edition, Stallings, Prentice Hall, 1995

Original diagram from The Design of the UNIX Operating System, M.
Bach, Prentice Hall, 1986

12 Fall 2007, Chapter 3

UNIX Process Model
(cont.)

m Start in Created, go to either:
® Ready to Run, in Memory

@ or Ready to Run, Swapped (Out) if there
isn’t room in memory for the new process

@ Ready to Run, in Memory is basically
same state as Preempted (dotted line)
m Preempted means process was returning

to user mode, but the kernel switched to
another process instead
m When scheduled, go to either:
@ User Running (if in user mode)
o or Kernel Running (if in kernel mode)

® Go from U.R. to K.R. via system call

m Go to Asleep in Memory when waiting
for some event, to RtRiM when it occurs

m Go to Sleep, Swapped if swapped out

13 Fall 2007, Chapter 3

Process Creation in UNIX

m One process can create another process,
perhaps to do some work for it

® The original process is called the parent
® The new process is called the child

® The child is an (almost) identical copy of
parent (same code, same data, etc.)

® The parent can either wait for the child to
complete, or continue executing in
parallel (concurrently) with the child

m In UNIX, a process creates a child
process using the system call fork()

@ In child process, fork() returns 0
® In parent process, fork() returns process
id of new child

m Child often uses exec() to start another
completely different program

14 Fall 2007, Chapter 3

Example of UNIX Process Creation

#include <sys/types.h>
#include <stdio.h>

inta=6; /* global (external) variable */
int main(void)
intb; /* local variable */

pid_t pid; /* process id */

b = 88;
printf("..before fork\n");

pid = fork();

if (pid == 0) { /* child */
a++; b++;

}else /* parent */
wait(pid);

printf("..after fork, a = %d, b = %d\n", a, b);
exit(0);

¥

aegis> fork

..before fork

..after fork,a=7,b =89
..after fork, a=6,b =88

15 Fall 2007, Chapter 3

Context Switching

m Stopping one process and starting
another is called a context switch

® When the OS stops a process, it stores
the hardware registers (PC, SP, etc.) and
any other state information in that
process’ PCB

® When OS is ready to execute a waiting
process, it loads the hardware registers
(PC, SP, etc.) with the values stored in
the new process’ PCB, and restores any
other state information

® Performing a context switch is a relatively
expensive operation

m However, time-sharing systems may do
1001000 context switches a second

m Why so often?
m Why not more often?

16 Fall 2007, Chapter 3

Context Switching

process P, operating system process P,

interrupt or system call

executing ﬂ
T save state into PCB,,
reload state from PCB, 1

interrupt or system call

v
save state into PCB,

idle

executing

r idle

idle

J reload state from PCB
executing U\

17 Fall 2007, Chapter 3

Schedulers

m Medium-term scheduler (demand paging)

® On time-sharing systems, does some of
what long-term scheduler used to do

® May swap processes out of memory
temporarily

® May suspend and resume processes

® Goal: balance load for better throughput

m Short-term scheduler (CPU scheduler)

® Executes frequently, about one hundred
times per second (every 10ms)

® Runs whenever:
m Process is created or terminated
m Process switches from running to blocked
m Interrupt occurs

® Selects process from those that are ready
to execute, allocates CPU to that process

18 Fall 2007, Chapter 3

Ready Queue and
Various I/O Device Queues

queue header PCB, PCB,

registers registers

PCB,

disk [| head
unit0 tail

PCB,
terminal [~ héad - [B

unito | el 4

From Operating System Concepts, Silberschatz & Galvin., Addison-Wesley, 1994

m OS organizes all waiting processes (their
PCBs, actually) into a number of queues

® Queue for ready processes

® Queue for processes waiting on each
device (e.g., mouse) or type of event
(e.g., message)

19 Fall 2007, Chapter 3

The Producer-Consumer Problem

m One process is a producer of information; another is a
consumer of that information

m Processes communicate through a bounded (fixed-
size) circular buffer

var buffer: array[0..n-1] of items; /* circular array */

in=0
out=0
n=7
0 1 2 3 4 5
l free ! free | full ‘ full ‘ full | free ! free l
out in

/* producer */ /* consumer */

repeat forever repeat forever
while (in == out)
produce item nextp do nothing
nextc = buffer[out]
while (in+1 mod n == out) out = out+1 mod n

do nothing

buffer[in] = nextp consume item nextc
in=in+1 mod n

end repeat end repeat

20 Fall 2007, Chapter 3

Message Passing using
Send & Receive

m Blocking send:
® send(destination-process, message)

® Sends a message to another process, then
blocks (i.e., gets suspended by OS) until
message is received

m Blocking receive:
® receive(source-process, message)

@ Blocks until a message is received (may
be minutes, hours, ...)

m Producer-Consumer problem:

/* producer */ /* consumer */

repeat forever repeat forever

. receive(producer,nextc)
produce item nextp
consume item nextc
send(consumer, nextp)

Direct vs. Indirect Communication

m Direct communication — explicitly name
the process you’re communicating with
m send(destination-process, message)
m receive(source-process, message)

® Variation: receiver may be able to use a
“wildcard” to receive from any source

® Receiver can not distinguish between
multiple “types” of messages from sender

m Indirect communication — communicate
using mailboxes (owned by receiver)
m send(mailbox, message)
m receive(mailbox, message)

@ Variation: ... “wildcard” to receive from
any source into that mailbox

® Receiver can distinguish between
multiple “types” of messages from sender

end repeat end repeat ® Some systems use “tags” instead of
mailboxes
21 Fall 2007, Chapter 3 22 Fall 2007, Chapter 3
. Client / Server Model using
Buffering

m Link may be able to temporarily queue
some messages during communication

m Zero capacity: (queue of length 0)

® Blocking send operation

m Sender must wait until receiver receives
the message — this synchronization to
exchange data is called a rendezvous

m Bounded capacity: (queue of length n)

@ Blocking send operation

m If receiver’s queue is has free space, new
message is put on queue, and sender can
continue executing immediately

m If queue is full, sender must block until
space is available in the queue

m Unbounded capacity: (infinite queue)

@ Non-blocking send operation
m Sender can always continue

23 Fall 2007, Chapter 3

Message Passing

request request
client {
k server
reply 4—/reply
kernel kernel
< network

m Client / server model

® Server = process (or collection of
processes) that provides a service

m Example: name service, file service
® Client — process that uses the service

® Request / reply protocol:

m Client sends request message to server,
asking it to perform some service

m Server performs service, sends reply
message containing results or error code

24 Fall 2007, Chapter 3

Remote Procedure Call (RPC)

m RPC mechanism:

® Hides message-passing I/O from the
programmer

® Looks (almost) like a procedure call —
but client invokes a procedure on a server

m RPC invocation (high-level view):
@ Calling process (client) is suspended

® Parameters of procedure are passed
across network to called process (server)

@ Server executes procedure

® Return parameters are sent back across
network

@ Calling process resumes

m Invented by Birrell & Nelson at Xerox
PARC, described in February 1984 ACM
Transactions on Computer Systems

25 Fall 2007, Chapter 3

Client / Server Model using
Remote Procedure Calls (RPCs)

' pack unpack '
call parameters parameters ! cg||
0 client y !
client !) server
e stub stub | server
return return
| unpack pack |
| results results |
kernel kernel

Aly

network

m Each RPC invocation by a client process
calls a client stub, which builds a message
and sends it to a server stub

m The server stub uses the message to
generate a local procedure call to the server

m If the local procedure call returns a value, the
server stub builds a message and sends it to
the client stub, which receives it and returns
the result(s) to the client

26 Fall 2007, Chapter 3

Remote Method Invocation (RMI)

m RMI mechanism:
® A Java mechanism similar to RPCs

® Allows a Java program on one machine
to invoke a method on a remote object

@ Client stub creates a parcel, sends to
skeleton on the server side

client remote object

val = server.someMethod(A,B) boolean someMethod (Object x, Object y)

{

implementation of someMethod

skeleton

}

stub

A, B, someMethod

boolean return value

27 Fall 2007, Chapter 3

