CPU Scheduling

blocked

m The CPU scheduler (sometimes called
the dispatcher or short-term scheduler):

® Selects a process from the ready queue
and lets it run on the CPU

m Assumes all processes are in memory, and
one of those is executing on the CPU

@ Crucial in multiprogramming environment
m Goal is to maximize CPU utilization

m Non-preemptive scheduling — scheduler
executes only when:
® Process is terminated

® Process switches from running to blocked

1 Chapter 05, Fall 2007

Process Execution Behavior

m Assumptions:
® One process per user
® One thread per process
® Processes are independent, and compete
for resources (including the CPU)
m Processes run in CPU - 1/O burst cycle:
® Compute for a while (on CPU)
® Do some 1/O

® Continue these two repeatedly

m Two types of processes:

® CPU-bound — does mostly computation
(long CPU burst), and very little 1/0

® |/O-bound — does mostly I/0, and very
little computation (short CPU burst)

2 Chapter 05, Fall 2007

First-Come-First-Served (FCFS)

m Other names:
® First-In-First-Out (FIFO)
® Run-Until-Done

m Policy:

® Choose process from ready queue in the
order of its arrival, and run that process
non-preemptively
m Early FCFS schedulers were overly non-
preemptive: the process did not relinquish
the CPU until it was finished, even when it
was doing 1/0
m Now, non-preemptive means the
scheduler chooses another process when
the first one terminates or blocks

m Implement using FIFO queue (add to tail,
take from head)

Chapter 05, Fall 2007

FCFS Example

m Example 1:
Process P1 P2 P3
(Arrival Order)
Burst Time 24 3 3
Arrival Time 0 0 0
\ P1 [P2[P3]
0 24 27 30

average waiting time = (0 + 24 + 27) /3 =17

m Example 2:

Process

(Arrival Order) | P3| P2 | P1

Burst Time 3 3 24
Arrival Time 0 0 0
[P3[P2] P1 |
0 3 6 30

average waiting time=(0+3+6)/3=3

4 Chapter 05, Fall 2007

CPU Scheduling Goals

m CPU scheduler must decide:
® How long a process executes

@ In which order processes will execute

m User-oriented scheduling policy goals:

® Minimize average response time (time
from request received until response
starts) while maximizing nhumber of
interactive users receiving adequate
response

® Minimize turnaround time (time from
process start until completion)
m Execution time plus waiting time

® Minimize variance of average response
time
m Predictability is important

m Process should always run in (roughly)
same amount of time regardless of the
load on the system

5 Chapter 05, Fall 2007

CPU Scheduling Goals (cont.)

m System-oriented scheduling policy goals:

® Maximize throughput (number of
processes that complete in unit time)

® Maximize processor utilization
(percentage of time CPU is busy)

m Other (non-performance related) system-
oriented scheduling policy goals:

® Fairness — in the absence of guidance
from the user or the OS, processes
should be treated the same, and no
process should suffer starvation (being
infinitely denied service)
m May have to be less fair in order to
minimize average response time!

@ Balance resources — keep all resources
of the system (CPU, memory, disk, 1/0)
busy

m Favor processes that will underuse
stressed resources

Chapter 05, Fall 2007

FCFS Evaluation

m Non-preemptive

m Response time — slow if there is a large
variance in process execution times

@ If one long process is followed by
many short processes, short processes
have to wait a long time

o If one CPU-bound process is followed
many 1/O-bound processes, there’s a
“convoy effect”

m Low CPU and /O device utilization

m Throughput — not emphasized

m Fairness —penalizes short processes
and I/0O bound processes

m Starvation — not possible

m Overhead — minimal

Chapter 05, Fall 2007

Preemptive vs. Non-Preemptive
Scheduling

m Non-preemptive scheduling — scheduler
executes only when:

® Process is terminated

® Process switches from running to blocked

m Preemptive scheduler — scheduler can
execute at (almost) any time:

® Executes at times above, also when:
m Process is created
m Blocked process becomes ready
m A timer interrupt occurs

® More overhead, but keeps long
processes from monopolizing CPU

® Must not preempt OS kernel while it’s
servicing a system call (e.g., reading a
file) or otherwise in an inconsistent state

X Can still leave data shared between user
processes in an inconsistent state

Chapter 05, Fall 2007

Round-Robin Round-Robin Example
m Policy: m Example 1:
® Define a fixed time slice (also called a (Arl'-:i\l;gtl:%s:ier) P1 P2 P3
time quantum) Burst Time 24 3 3
® Choose process from head of ready Armival e | o o o
queue
) R_un that process f?r at most one time I EEE L
slice, and if it hasn’t completed by then, 6 4 7 10 12 18 22 26 30
add it to the tail of the ready queue
average waiting time = (4 + 7 + (10-4)) / 3 = 5.66
o If that process terminates or blocks
before its time slice is up, choose another m Example 2:
process from the head of the ready
queue, and run that process for at most (Anvaroren | P3| P2 | Pt
one time slice... Burst Time 3 3 o4
u Implement using: Arrival Time 0 0 0
® Hardware timer that interrupts at periodic
. [P3[P2[P1[P1[P1[P1[P1]P1]
intervals
0 3 6 10 14 18 22 26 30
® FIFO ready queue (add to tail, take from average walting time = (0.4 3 + 6) /3 = 3
head)
9 Chapter 05, Fall 2007 10 Chapter 05, Fall 2007
Round-Robin Evaluation Shortest-Job-First (SJF)
m Preemptive (at end of time slice) m Other names:
. ® Shortest-Process-Next (SPN)
m Response time — good for short

processes

® Long processes may have to wait n*q
time units for another time slice

m n = number of other processes,
g = length of time slice

Throughput — depends on time slice
® Too small — too many context switches

® Too large — approximates FCFS

Fairness — penalizes 1/0-bound
processes (may not use full time slice)

Starvation — not possible

Overhead — low

Chapter 05, Fall 2007

m Policy:

@ Choose the process that has the smallest
next CPU burst, and run that process
non-preemptively (until termination or
blocking)

® In case of a tie, FCFS is used to break
the tie

m Difficulty: determining length of next
CPU burst

® Approximation — predict length, based
on past performance of the process, and
on past predictions

12 Chapter 05, Fall 2007

SJF Example

m SJF Example:

Process
(Arrival Order) P1 P2 P3 P4
Burst Time 6 8 7 3
Arrival Time 0 0 0 0
\F’4\ P1 \ P3 \ P2 \
0 3 9 16 24

average waiting time=(0+3+9+16)/4=7

m Same Example, FCFS Schedule:

[P1 | P2 | P3 [P4]
0o 6 14 21 24

average waiting time = (0 + 6 + 14 + 21) /4 =10.25

3 Chapter 05, Fall 2007

SJF Evaluation

m Non-preemptive

m Response time — good for short
processes

® Long processes may have to wait until a
large number of short processes finish

® Provably optimal — minimizes average
waiting time for a given set of processes

m Throughput — high
m Fairness — penalizes long processes
m Starvation — possible for long processes

m Overhead — can be high (recording and
estimating CPU burst times)

14 Chapter 05, Fall 2007

Shortest-Remaining-Time (SRT)

m SRT is a preemptive version of SJF
(OSC just calls this preemptive SJF)

m Policy:

® Choose the process that has the smallest
next CPU burst, and run that process
preemptively...
m (until termination or blocking, or
m until a process enters the ready queue

(either a new process or a previously
blocked process))

@ At that point, choose another process to
run if one has a smaller expected CPU
burst than what is left of the current
process’ CPU burst

Chapter 05, Fall 2007

SJF & SRT Example

m SJF Example:

Process
(Arrival Order) P1 P2 P3 P4
Burst Time 8 4 9 5
Arrival Time 0 1 2 3
[[TiP1 P2 P4 P3]
0 8 12 17 26

average waiting time = (0 + (8—1) + (12-3) + (17-2)) /4 =775
m Same Example, SRT Schedule:

V¥
Pi[F2] P4 P1 [P3 |
0 5 10 17 24

average waiting time = ((0+(10-1) + (1-1) + (17-2) + (5-3)) /4 =6.5

16 Chapter 05, Fall 2007

SRT Evaluation

m Preemptive (at arrival of process into
ready queue)

m Response time — good

® Provably optimal — minimizes average
waiting time for a given set of processes

m Throughput — high

m Fairness — penalizes long processes

@ Note that long processes eventually
become short processes

m Starvation — possible for long processes

m Overhead — can be high (recording and
estimating CPU burst times)

17 Chapter 05, Fall 2007

Priority Scheduling

m Policy:

® Associate a priority with each process

m Externally defined, based on importance,
money, politics, etc.

m Internally defined, based on memory
requirements, file requirements, CPU
requirements vs. 1/0 requirements, etc.

m SJF is priority scheduling, where priority is
inversely proportional to length of next
CPU burst

® Choose the process that has the highest
priority, and run that process either:
m preemptively, or
m non-preemptively

m Evaluation

@ Starvation — possible for low-priority
processes

m Can avoid by aging processes: increase
priority as they spend time in the system

18 Chapter 05, Fall 2007

Multilevel Queue Scheduling

m Policy:

® Use several ready queues, and associate
a different priority with each queue

® Choose the process from the occupied
queue that has the highest priority, and
run that process either:
m preemptively, or
m non-preemptively

@ Assign new processes permanently to a
particular queue
m Foreground, background
m System, interactive, editing, computing

® Each queue can have a different
scheduling policy
m Example: preemptive, using timer
— 80% of CPU time to foreground, using RR

— 20% of CPU time to background, using
FCFS

19 Chapter 05, Fall 2007

Multilevel Feedback Queue Scheduling

m Policy:

® Use several ready queues, and associate
a different priority with each queue

® Choose the process from the occupied
gueue with the highest priority, and run
that process either:
m preemptively, or
m non-preemptively

® Each queue can have a different
scheduling policy

® Allow scheduler to move processes
between queues
m Start each process in a high-priority
queue; as it finishes each CPU burst,
move it to a lower-priority queue
m Aging — move older processes to higher-
priority queues
m Feedback = use the past to predict the
future — favor jobs that haven’t used the
CPU much in the past — close to SRT!

20 Chapter 05, Fall 2007

CPU Scheduling in UNIX using
Multilevel Feedback Queue Scheduling

m Policy:

® Multiple queues, each with a priority value
(low value = high priority):
m Kernel processes have negative values

— Includes processes performing system
calls, that just finished their 1/0 and
haven't yet returned to user mode

m User processes (doing computation) have
positive values

® Choose the process from the occupied
gueue with the highest priority, and run
that process preemptively, using a timer
(time slice typically around 100ms)
m Round-robin scheduling in each queue

® Move processes between queues
m Keep track of clock ticks (60/second)

m Once per second, add clock ticks to
priority value

m Also change priority based on whether or
not process has used more than it'’s “fair
share” of CPU time (compared to others)

21 Chapter 05, Fall 2007

