
1 Chapter 05, Fall 2007

CPU Scheduling

! The CPU scheduler (sometimes called

the dispatcher or short-term scheduler):

! Selects a process from the ready queue
and lets it run on the CPU

! Assumes all processes are in memory, and

one of those is executing on the CPU

! Crucial in multiprogramming environment

! Goal is to maximize CPU utilization

! Non-preemptive scheduling — scheduler

executes only when:

! Process is terminated

! Process switches from running to blocked

ready running
admit

dispatch

timeout

release
new exit

blocked

event
wait

event
occurs

2 Chapter 05, Fall 2007

Process Execution Behavior

! Assumptions:

! One process per user

! One thread per process

! Processes are independent, and compete
for resources (including the CPU)

! Processes run in CPU - I/O burst cycle:

! Compute for a while (on CPU)

! Do some I/O

! Continue these two repeatedly

! Two types of processes:

! CPU-bound — does mostly computation
(long CPU burst), and very little I/O

! I/O-bound — does mostly I/O, and very
little computation (short CPU burst)

3 Chapter 05, Fall 2007

First-Come-First-Served (FCFS)

! Other names:

! First-In-First-Out (FIFO)

! Run-Until-Done

! Policy:

! Choose process from ready queue in the
order of its arrival, and run that process
non-preemptively

! Early FCFS schedulers were overly non-

preemptive: the process did not relinquish

the CPU until it was finished, even when it

was doing I/O

! Now, non-preemptive means the

scheduler chooses another process when

the first one terminates or blocks

! Implement using FIFO queue (add to tail,

take from head)

4 Chapter 05, Fall 2007

FCFS Example

! Example 1:

! Example 2:

Process
(Arrival Order)

Burst Time

Arrival Time

P1 P2 P3

24 3 3

0 0 0

P1 P2 P3

0 24 27 30

average waiting time = (0 + 24 + 27) / 3 = 17

Process
(Arrival Order)

Burst Time

Arrival Time

P3 P2 P1

3 3 24

0 0 0

P1P3 P2

0 3 6 30

average waiting time = (0 + 3 + 6) / 3 = 3

5 Chapter 05, Fall 2007

CPU Scheduling Goals

! CPU scheduler must decide:

! How long a process executes

! In which order processes will execute

! User-oriented scheduling policy goals:

! Minimize average response time (time
from request received until response
starts) while maximizing number of
interactive users receiving adequate
response

! Minimize turnaround time (time from
process start until completion)

! Execution time plus waiting time

! Minimize variance of average response
time

! Predictability is important

! Process should always run in (roughly)

same amount of time regardless of the

load on the system

6 Chapter 05, Fall 2007

CPU Scheduling Goals (cont.)

! System-oriented scheduling policy goals:

! Maximize throughput (number of
processes that complete in unit time)

! Maximize processor utilization
(percentage of time CPU is busy)

! Other (non-performance related) system-

oriented scheduling policy goals:

! Fairness — in the absence of guidance
from the user or the OS, processes
should be treated the same, and no
process should suffer starvation (being
infinitely denied service)

! May have to be less fair in order to

minimize average response time!

! Balance resources — keep all resources
of the system (CPU, memory, disk, I/O)
busy

! Favor processes that will underuse

stressed resources

7 Chapter 05, Fall 2007

FCFS Evaluation

! Non-preemptive

! Response time — slow if there is a large

variance in process execution times

! If one long process is followed by
many short processes, short processes
have to wait a long time

! If one CPU-bound process is followed
many I/O-bound processes, there!s a
“convoy effect”

! Low CPU and I/O device utilization

! Throughput — not emphasized

! Fairness —penalizes short processes
and I/O bound processes

! Starvation — not possible

! Overhead — minimal
8 Chapter 05, Fall 2007

Preemptive vs. Non-Preemptive
Scheduling

! Non-preemptive scheduling — scheduler

executes only when:

! Process is terminated

! Process switches from running to blocked

! Preemptive scheduler — scheduler can

execute at (almost) any time:

! Executes at times above, also when:

! Process is created

! Blocked process becomes ready

! A timer interrupt occurs

! More overhead, but keeps long
processes from monopolizing CPU

! Must not preempt OS kernel while it!s
servicing a system call (e.g., reading a
file) or otherwise in an inconsistent state

" Can still leave data shared between user
processes in an inconsistent state

9 Chapter 05, Fall 2007

Round-Robin

! Policy:

! Define a fixed time slice (also called a
time quantum)

! Choose process from head of ready
queue

! Run that process for at most one time
slice, and if it hasn!t completed by then,
add it to the tail of the ready queue

! If that process terminates or blocks
before its time slice is up, choose another
process from the head of the ready
queue, and run that process for at most
one time slice…

! Implement using:

! Hardware timer that interrupts at periodic
intervals

! FIFO ready queue (add to tail, take from
head)

10 Chapter 05, Fall 2007

Round-Robin Example

! Example 1:

! Example 2:

Process
(Arrival Order)

Burst Time

Arrival Time

P1 P2 P3

24 3 3

0 0 0

P1

0 4 30

average waiting time = (4 + 7 + (10–4)) / 3 = 5.66

P2 P3 P1 P1 P1 P1 P1

7 10 14 18 22 26

Process
(Arrival Order)

Burst Time

Arrival Time

P3 P2 P1

3 3 24

0 0 0

P3 P2

0 3

average waiting time = (0 + 3 + 6) / 3 = 3

P1

30

P1 P1 P1 P1 P1

10 14 18 22 266

11 Chapter 05, Fall 2007

Round-Robin Evaluation

! Preemptive (at end of time slice)

! Response time — good for short

processes

! Long processes may have to wait n*q
time units for another time slice

! n = number of other processes,

q = length of time slice

! Throughput — depends on time slice

! Too small — too many context switches

! Too large — approximates FCFS

! Fairness — penalizes I/O-bound

processes (may not use full time slice)

! Starvation — not possible

! Overhead — low

12 Chapter 05, Fall 2007

Shortest-Job-First (SJF)

! Other names:

! Shortest-Process-Next (SPN)

! Policy:

! Choose the process that has the smallest
next CPU burst, and run that process
non-preemptively (until termination or
blocking)

! In case of a tie, FCFS is used to break
the tie

! Difficulty: determining length of next
CPU burst

! Approximation — predict length, based
on past performance of the process, and
on past predictions

13 Chapter 05, Fall 2007

SJF Example

! SJF Example:

! Same Example, FCFS Schedule:

Process
(Arrival Order)

Burst Time

Arrival Time

P1 P2 P3

6 8 7

0 0 0

P4

0 3

average waiting time = (0 + 3 + 9 + 16) / 4 = 7

P1 P3 P2

9 16 24

P4

3

0

P4

0 6

average waiting time = (0 + 6 + 14 + 21) / 4 = 10.25

P1 P3P2

14 21 24

14 Chapter 05, Fall 2007

SJF Evaluation

! Non-preemptive

! Response time — good for short

processes

! Long processes may have to wait until a
large number of short processes finish

! Provably optimal — minimizes average
waiting time for a given set of processes

! Throughput — high

! Fairness — penalizes long processes

! Starvation — possible for long processes

! Overhead — can be high (recording and

estimating CPU burst times)

15 Chapter 05, Fall 2007

Shortest-Remaining-Time (SRT)

! SRT is a preemptive version of SJF

(OSC just calls this preemptive SJF)

! Policy:

! Choose the process that has the smallest
next CPU burst, and run that process
preemptively…

! (until termination or blocking, or

! until a process enters the ready queue

(either a new process or a previously

blocked process))

! At that point, choose another process to
run if one has a smaller expected CPU
burst than what is left of the current
process! CPU burst

16 Chapter 05, Fall 2007

SJF & SRT Example

! SJF Example:

! Same Example, SRT Schedule:

0 5

average waiting time = ((0+(10–1) + (1–1) + (17–2) + (5–3)) / 4 = 6.5

P1

10 17 24

P4P2 P1 P3

Process
(Arrival Order)

Burst Time

Arrival Time

P1 P2 P3

8 4 9

0 1 2

P4

0 8

average waiting time = (0 + (8–1) + (12–3) + (17–2)) / 4 = 7.75

P1 P3P2

12 17 26

P4

5

3

17 Chapter 05, Fall 2007

SRT Evaluation

! Preemptive (at arrival of process into

ready queue)

! Response time — good

! Provably optimal — minimizes average
waiting time for a given set of processes

! Throughput — high

! Fairness — penalizes long processes

! Note that long processes eventually
become short processes

! Starvation — possible for long processes

! Overhead — can be high (recording and

estimating CPU burst times)

18 Chapter 05, Fall 2007

Priority Scheduling

! Policy:

! Associate a priority with each process

! Externally defined, based on importance,

money, politics, etc.

! Internally defined, based on memory

requirements, file requirements, CPU

requirements vs. I/O requirements, etc.

! SJF is priority scheduling, where priority is

inversely proportional to length of next

CPU burst

! Choose the process that has the highest
priority, and run that process either:

! preemptively, or

! non-preemptively

! Evaluation

! Starvation — possible for low-priority
processes

! Can avoid by aging processes: increase

priority as they spend time in the system

19 Chapter 05, Fall 2007

Multilevel Queue Scheduling

! Policy:

! Use several ready queues, and associate
a different priority with each queue

! Choose the process from the occupied
queue that has the highest priority, and
run that process either:

! preemptively, or

! non-preemptively

! Assign new processes permanently to a
particular queue

! Foreground, background

! System, interactive, editing, computing

! Each queue can have a different
scheduling policy

! Example: preemptive, using timer

– 80% of CPU time to foreground, using RR

– 20% of CPU time to background, using

FCFS

20 Chapter 05, Fall 2007

Multilevel Feedback Queue Scheduling

! Policy:

! Use several ready queues, and associate
a different priority with each queue

! Choose the process from the occupied
queue with the highest priority, and run
that process either:

! preemptively, or

! non-preemptively

! Each queue can have a different
scheduling policy

! Allow scheduler to move processes
between queues

! Start each process in a high-priority

queue; as it finishes each CPU burst,

move it to a lower-priority queue

! Aging — move older processes to higher-

priority queues

! Feedback = use the past to predict the

future — favor jobs that haven!t used the

CPU much in the past — close to SRT!

21 Chapter 05, Fall 2007

CPU Scheduling in UNIX using
Multilevel Feedback Queue Scheduling

! Policy:

! Multiple queues, each with a priority value
(low value = high priority):

! Kernel processes have negative values

– Includes processes performing system

calls, that just finished their I/O and

haven!t yet returned to user mode

! User processes (doing computation) have

positive values

! Choose the process from the occupied
queue with the highest priority, and run
that process preemptively, using a timer
(time slice typically around 100ms)

! Round-robin scheduling in each queue

! Move processes between queues

! Keep track of clock ticks (60/second)

! Once per second, add clock ticks to

priority value

! Also change priority based on whether or

not process has used more than it!s “fair

share” of CPU time (compared to others)

