
1 Fall 2007, Chapter 06

The Producer-Consumer Problem
(Review from Chapter 03)

! One thread is a producer of information;

another is a consumer of that information

! They share a bounded circular buffer

! Processes — OS must support shared
memory between processes

! Threads — all memory is shared

var buffer: array[0..n-1] of items; /* circular array */

in = 0

out = 0

/* producer */ /* consumer */

repeat forever repeat forever

… while (in == out)

produce item nextp do nothing

… nextc = buffer[out]

while (in+1 mod n == out) out = out+1 mod n

do nothing …

buffer[in] = nextp consume item nextc

in = in+1 mod n …

end repeat end repeat

free free full full full free free

out in

0 1 2 3 4 5 6

n = 7

2 Fall 2007, Chapter 06

Too Much Milk!

Time You Your Roommate

3:00 Arrive home

3:05 Look in fridge, no milk

3:10 Leave for grocery

3:15 Arrive home

3:20 Arrive at grocery Look in fridge, no milk

3:25 Buy milk, leave Leave for grocery

3:30

3:35 Arrive home Arrive at grocery

3:36 Put milk in fridge

3:40 Buy milk, leave

3:45

3:50 Arrive home

3:51 Put milk in fridge

3:51 Oh, no! Too much milk!!

! The problem here is that the lines:

“Look in fridge, no milk”

through

“Put milk in fridge”

are not an atomic operation

3 Fall 2007, Chapter 06

Another Example

Thread A Thread B

i = 0 i = 0

while (i < 10) while (i > –10)

i = i + 1 i = i – 1

print “A wins” print “B wins”

! Assumptions:

! Memory load and store are atomic

! Increment and decrement are not atomic

! Questions:

! Who wins?

! Is it guaranteed that someone wins?

! What if both threads have their own CPU,
running concurrently at exactly the same
speed? Is it guaranteed that it goes on
forever?

! What if they are sharing a CPU?

4 Fall 2007, Chapter 06

Critical Section & Mutual Exclusion

! Critical section (region) — code that only

one thread can execute at a time (e.g.,

code that modifies shared data)

! Mutual exclusion — ensures that only
one thread does a particular activity at a

time — all other threads are excluded
from doing that activity

! More formally, if process Pi is executing in
its critical section, then no other
processes can be executing in their
critical sections

! Lock — mechanism that prevents

another thread from doing something:

! Lock before entering a critical section

! Unlock when leaving a critical section

! Thread wanting to enter a locked critical
section must wait until it!s unlocked

5 Fall 2007, Chapter 06

Enforcing Mutual Exclusion

! Methods to enforce mutual exclusion

! Up to user — threads have to explicitly
coordinate with each other

! Up to OS — support for mutual exclusion

! Up to hardware —architectural support

! Solution must make progress — if no

process is executing in its critical section,

and there exist some processes that wish

to enter their critical section, then the
selection of the processes that will enter

the critical section next cannot be

postponed indefinitely

! Avoid starvation — if a thread starts trying
to gain access to the critical section, then
it should eventually succeed

! Avoid deadlock — if some threads are
trying to enter their critical sections, then
one of them must eventually succeed

6 Fall 2007, Chapter 06

Algorithm 1

! Informal description:

! Igloo with blackboard inside

! Only one person (thread) can fit in the

igloo at a time

! In the igloo is a blackboard, which is large

enough to hold only one value

! A thread that wants to execute the critical
section enters the igloo, and examines
the blackboard

! If its number is not on the blackboard, it

leaves the igloo, goes outside, and runs

laps around the igloo

– After a while, it goes back inside, and

checks the blackboard again

– This “busy waiting” continues until

eventually its number is on the blackboard

! If its number is on the blackboard, it

leaves the igloo and goes on to the critical

section

! When it returns from the critical section, it

enters the igloo, and writes the other

thread!s number on the blackboard

7 Fall 2007, Chapter 06

Algorithm 1 (cont.)

! Code:

t1 () {
while (true) {

while (turn != 1)
; /* do nothing */

… critical section of code …
turn = 2;
… other non-critical code …

}
}

t2 () {
while (true) {

while (turn != 2)
; /* do nothing */

… critical section of code …
turn = 1;
… other non-critical code …

}
}

8 Fall 2007, Chapter 06

Algorithm 2a

! Informal description:

! Each thread has its own igloo

! A thread can examine and alter its own

blackboard

! A thread can examine, but not alter, the

other thread!s blackboard

! “true” on blackboard = that thread is in the

critical section

! A thread that wants to execute the critical
section enters the other thread!s igloo,
and examines the blackboard

! It looks for “false” on that blackboard,

indicating that the other thread is not in

the critical section

– When that happens, it goes back to its

own igloo, and writes “true” on its own

blackboard, and then goes on to the

critical section

! When it returns from the critical section, it

enters the igloo, and writes “false” on the

blackboard

9 Fall 2007, Chapter 06

Algorithm 2a (cont.)

! Code:

t1 () {
while (true) {

while (t2_in_crit == true)
; /* do nothing */

t1_in_crit = true;
… critical section of code …
t1_in_crit = false;
… other non-critical code …

}
}

t2 () {
while (true) {

while (t1_in_crit == true)
; /* do nothing */

t2_in_crit = true;
… critical section of code …
t2_in_crit = false;
… other non-critical code …

}
}

10 Fall 2007, Chapter 06

Algorithm 2b

! Code:

t1 () {
while (true) {

t1_in_crit = true;
while (t2_in_crit == true)

; /* do nothing */
… critical section of code …
t1_in_crit = false;
… other non-critical code …

}
}

t2 () {
while (true) {

t2_in_crit = true;
while (t1_in_crit == true)

; /* do nothing */
… critical section of code …
t2_in_crit = false;
… other non-critical code …

}
}

11 Fall 2007, Chapter 06

Algorithm 3

! Think of this algorithm as using a referee

who keeps track of whose “turn” it is

! Anytime the two disagree about whose
turn it is, they ask the referee, who keeps
track of whose turn it is to have priority

! This is called Peterson!s algorithm (1981)

! The original (but more complicated)

solution to this problem is Dekker!s

algorithm (1965)

! For n processes, we can use Lamport!s
Bakery algorithm (1974)

! When a thread tries to enter the critical
section, it get assigned a number higher
than anyone else!s number

! Thread with lowest number gets in

! If two threads get the same number, the
one with the lowest process id gets in

12 Fall 2007, Chapter 06

Algorithm 3 (cont.)

! Code:

t1 () {
while (true) {

t1_in_crit = true;
turn = 2;
while (t2_in_crit == true && turn != 1)

; /* do nothing */
… critical section of code …
 t1_in_crit = false;
… other non-critical code …

}
}

t2 () {
while (true) {

similar…
}

}

13 Fall 2007, Chapter 06

Semaphores —
OS Support for Mutual Exclusion

! Semaphores were invented by Dijkstra in

1965, and can be thought of as a

generalized locking mechanism

! A semaphore supports two atomic
operations, P / wait and V / signal

! The semaphore initialized to 1

! Before entering the critical section,

a thread calls “P(semaphore)”,

or sometimes “wait(semaphore)”

! After leaving the critical section,

a thread calls “V(semaphore)”,

or sometimes “signal(semaphore)”

! Too much milk:

Thread A Thread B

milk.P(); milk.P();

if (noMilk) if (noMilk)

buy milk; buy milk;

milk.V(); milk.V();

14 Fall 2007, Chapter 06

What Does a Semaphore Do?

! Semaphore “s” is initially 1

! Before entering the critical section, a

thread calls “P(s)” or “wait(s)”

! wait (s):

! s = s – 1

! if (s < 0)

block the thread that called wait(s) on a

queue associated with semaphore s

! otherwise

let the thread that called wait(s) continue into

the critical section

! After leaving the critical section, a thread

calls “V(s)” or “signal(s)”

! signal (s):

! s = s + 1

! if (s ! 0), then

wake up one of the threads that called

wait(s), and run it so that it can continue

into the critical section

15 Fall 2007, Chapter 06

Using Semaphores for
Mutual Exclusion

! Too much milk:

Thread A Thread B

milk.P(); milk.P();

if (!haveMilk) if (!haveMilk)

buy milk; buy milk;

haveMilk=true; haveMilk=true;

milk.V(); milk.V();

! “haveMilk” is a Boolean variable

! “milk” is a semaphore initialized to 1

! Execution:

After: milk queue A B

1

A: milk.P(); 0 in CS

B: milk.P(); -1 B in CS waiting

A: milk.V(); 0 finish ready, in CS

B: milk.V(); 1 finish

16 Fall 2007, Chapter 06

Semaphore Operation

! Informal description:

! Single igloo, containing a blackboard and
a very large freezer

! Wait — thread enters the igloo, checks
the blackboard, and decrements the
value shown there

! If new value is 0, thread goes on to the

critical section

! If new value is negative, thread crawls in

the freezer and hibernates (making room

for others to enter the igloo)

! Signal — thread enters igloo, checks
blackboard, and increments the value
there

! If new value is 0 or negative, there!s a

thread waiting in the freezer, so it thaws

out a frozen thread, which then goes on to

the critical section

17 Fall 2007, Chapter 06

Using Semaphores

! Code using semaphores:

t1 () {
while (true) {

wait (s);
… critical section of code …
signal (s);
… other non-critical code …

}
}

t2 () {
while (true) {

wait (s);
… critical section of code …
signal (s);
… other non-critical code …

}
}

18 Fall 2007, Chapter 06

Semaphore Operation & Values

! Semaphores (simplified slightly):

wait (s): signal (s):

s = s – 1 s = s + 1

if (s < 0) if (s ! 0)
block the thread wake up & run one of

that called wait(s) the waiting threads

otherwise

continue into CS

! Semaphore values:

! Binary semaphore has an initial value of 1
and is used for mutual exclusion

! Positive semaphore = number of

(additional) threads that can be allowed into

the critical section (usually max of 1)

! Negative semaphore = number of threads

blocked (note — there!s also one in CS)

! Counting semaphore has an initial value
greater than 1, and is used for
synchronization between threads

19 Fall 2007, Chapter 06

The Coke Machine
(Bounded-Buffer Producer-Consumer)

/* number of full slots (Cokes) in machine */
semaphore fullSlot = 0;

/* number of empty slots in machine */
semaphore emptySlot = 100;
/* only one person accesses machine at a time */
semaphore mutex = 1;

DeliveryPerson()
{

emptySlot.P(); /* empty slot avail? */
mutex.P(); /* exclusive access */

put 1 Coke in machine
mutex.V();
fullSlot.V(); /* another full slot! */

}

ThirstyPerson()
{

fullSlot.P(); /* full slot (Coke)? */
mutex.P(); /* exclusive access */
get 1 Coke from machine
mutex.V();
emptySlot.V(); /* another empty slot! */

}

20 Fall 2007, Chapter 06

Two Versions of Semaphores

! Semaphores from last time (simplified):

wait (s): signal (s):

s = s – 1 s = s + 1

if (s < 0) if (s ! 0)
block the thread wake up one of

that called wait(s) the waiting threads

otherwise

continue into CS

! "Classical" version of semaphores:

wait (s): signal (s):

if (s ! 0) if (a thread is waiting)
block the thread wake up one of

that called wait(s) the waiting threads

s = s – 1 s = s + 1

continue into CS

! Do both work? What is the difference??

21 Fall 2007, Chapter 06

Implementing Semaphores

! Implementing semaphores using busy-
waiting:

wait (s): signal (s):

while (s ! 0) s = s + 1

do nothing;
s = s – 1

! Evaluation:

Waiting threads wastes time busy-waiting
(doing nothing useful, wasting CPU time)

The code inside wait(s) and signal(s) is a
critical section also, and it!s not protected

Doesn!t support a queue of multiple
blocked threads waiting on the
semaphore (why is this bad?)

22 Fall 2007, Chapter 06

Implementing Semaphores
(cont.)

! Implementing semaphores (not fully) by

disabling interrupts:

wait (s): signal (s):

disable interrupts disable interrupts
while (s ! 0) s = s + 1

do nothing;
s = s – 1
enable interrupts enable interrupts

! Evaluation:

"Protects code inside wait(s) and signal(s)
(but does this add any problems?)

Waiting threads wastes time busy-waiting

Doesn!t support queue of blocked threads

Users can!t disable interrupts

Can interfere with timer, which might be
needed by other applications

Doesn!t work on multiprocessors

23 Fall 2007, Chapter 06

Implementing Semaphores
(cont.)

! Implementing semaphores (not fully)

using a test&set instruction:

wait (s): signal (s):

while (test&set(lk)!=0) while (test&set(lk)!=0)
do nothing; do nothing;

while (s ! 0) s = s + 1

do nothing;
s = s – 1
lk = 0 lk = 0

! Operation:

! Lock “lk” has an initial value of 0 (free)

! If “lk” is free (lk=0), test&set atomically:

! reads 0, sets value to 1, and returns 0

! since lock was free when tested, exit loop,

but at the same time set the lock to busy

! If “lk” is busy (lk=1), test&set atomically:

! reads 1, sets value to 1, and returns 1

! lock is busy, so keep looping until free

24 Fall 2007, Chapter 06

Implementing Semaphores
(cont.)

! Test&set is an example of an atomic

read-modify-write (RMW) instruction

! RMW instructions atomically read a value
from memory, modify it, and write the new
value to memory

! Test&set — on most CPUs

! Exchange — Intel x86 — swaps values

between register and memory

! Compare&swap — Motorola 68xxx —

read value, if value matches value in

register r1, exchange register r1 and value

! Evaluation:

"Can be made to work, even on
multiprocessors (although there may be
some cache consistency problems)

Waiting threads wastes time busy-waiting

Doesn!t support queue of blocked threads
waiting on the semaphore

25 Fall 2007, Chapter 06

The Dining Philosophers

! 5 philosophers live together, and spend

most of their lives thinking and eating

(primarily spaghetti)

! They all eat together at a large table,
which is set with 5 plates and 5 forks

! To eat, a philosopher goes to his or her
assigned place, and uses the two forks
on either side of the plate to eat spaghetti

! When a philosopher isn!t eating, he or
she is thinking

! Problem: devise a ritual (an algorithm) to
allow the philosophers to eat

! Must satisfy mutual exclusion (i.e., only
one philosopher uses a fork at a time)

! Avoids deadlock (e.g., everyone holding
the left fork, and waiting for the right one)

! Avoids starvation (i.e., everyone
eventually gets a chance to eat)

26 Fall 2007, Chapter 06

The Dining Philosophers
(Using Semaphores)

! First solution — doesn!t work: (why not?)

philosopher-i ()
while (true)

think;
P(fork[i]);
P(fork[i+1 mod 5]);
eat; /* critical section */
V(fork[i]);
V(fork[i+1 mod 5]);

! Second solution — only 4 eat at a time:

philosopher-i ()
while (true)

think;
P(room_at_table);
P(fork[i]);
P(fork[i+1 mod 5]);
eat; /* critical section */
V(fork[i]);
V(fork[i+1 mod 5]);
V(room_at_table);

27 Fall 2007, Chapter 06

From Semaphores to
Locks and Condition Variables

! A semaphore serves two purposes:

! Mutual exclusion — protect shared data

! mutex in Coke machine

! milk in Too Much Milk

! Always a binary semaphore

! Synchronization — temporally coordinate
events (one thread waits for something,
other thread signals when it!s available)

! fullSlot and emptySlot in Coke machine

! Either a binary or counting semaphore

! Idea — two separate constructs:

! Locks — provide mutually exclusion

! Condition variables — provide
synchronization

! Like semaphores, locks and condition
variables are language-independent, and
are available in many programming
environments and OSs

28 Fall 2007, Chapter 06

Locks

! Locks provide mutually exclusive access

to shared data:

! A lock can be “locked” or “unlocked”
(sometimes called “busy” and “free”)

! Before accessing shared data, call
Lock::Acquire() on a specific lock

! After accessing shared data, call Lock::
Release() on that same lock

! Example (here,“milk” is a lock):

Thread A Thread B

milk->Acquire(); milk->Acquire();

if (noMilk) if (noMilk)

buy milk; buy milk;

milk->Release(); milk->Release();

! Can be implemented:

! Trivially using binary semaphores

! Using lower-level constructs

29 Fall 2007, Chapter 06

Locks vs. Condition Variables

! Consider the following code:

Queue::Add() { Queue::Remove() {

lock->Acquire(); lock->Acquire();

add item if item on queue

lock->Release(); remove item

} lock->Release();

return item;

}

! Queue::Remove will only return an item if
there!s already one in the queue

! If the queue is empty, it might be more

desirable for Queue::Remove to wait until

there is something to remove

! Can!t just go to sleep — if it sleeps while
holding the lock, no other thread can
access the shared queue, add an item to
it, and wake up the sleeping thread

! Solution: condition variables will let a
thread sleep inside a critical section, by
releasing the lock while the thread sleeps

30 Fall 2007, Chapter 06

Condition Variables

! Condition variables coordinate events

! After creating a new condition, the
programmer must create a lock that will
be associated with that condition variable

! Condition::Wait(conditionLock) — release
the lock and wait (sleep); when the thread
wakes up, immediately try to re-acquire
the lock; return when it has the lock

! Condition::Signal(conditionLock) — if
threads are waiting on the lock, wake up
one of those threads and put it on the
ready list; otherwise do nothing

! Can be implemented:

! By higher-level constructs

! Using binary semaphores

! Using lower-level constructs, much like
semaphores are implemented

31 Fall 2007, Chapter 06

Using Locks and Condition Variables

! Associated with a data structure is both a

lock and a condition variable

! Before the program performs an operation
on the data structure, it acquires the lock

! If it needs to wait until another operation
puts the data structure into an appropriate
state, it uses the condition variable to wait

! Unbounded-buffer producer-consumer:

Lock *lk; int avail = 0;
Condition *c;

/* consumer */
/* producer */ while (1) {
while (1) { lk-> Acquire();

lk->Acquire(); if (avail==0)
produce next item c->Wait(lk);
avail++; consume next item
c->Signal(lk) avail--;
lk->Release(); lk->Release();

} }

32 Fall 2007, Chapter 06

Monitors

! A monitor is a programming-language

abstraction that automatically associates

locks and condition variables with data

! A monitor includes private data and a set
of atomic operations (member functions)

! Only one thread can execute (any function

in) monitor code at a time

! Monitor functions access monitor data only

! Monitor data cannot be accessed outside

! A monitor also has a lock, and (optionally)
one or more condition variables

! Compiler automatically inserts an acquire

operation at the beginning of each function,

and a release at the end

! Special languages that supported

monitors were popular with some OS
people in the 1980s, but no longer

! Now, most OSs (OS/2, Windows NT,
Solaris) just provide locks and CVs

33 Fall 2007, Chapter 06

The Dining Philosophers
(Using Locks and CVs)

#define N 5

enum philosopher-state (thinking,hungry,eating);

Lock mutex;

Condition self[N];

philosopher-state state[N];

void pickup (int i) { void putdown (int i) {

mutex.Acquire(); mutex.Acquire();

state[i] = hungry; state[i] = thinking;

test(i); test((i+N–1) % N);

if (state[i] != eat) test((i+1) % N);

self[i].Wait(mutex); mutex.Release();

mutex.Release(); }

}

Void test (int k) {

if ((state([k+N–1) % N] != eat) &&

(state[k] == hungry) &&

state[(k+1) % N] != eat)) {

state[k] = eat;

self[k].Signal(mutex);

}

}

