
1 Fall 2007, Chapter 07

Deadlock

! Consider this example:

Process A Process B

printer–>wait(); disk–>wait();
disk->wait(); printer->wait();
print file print file
printer->signal(); disk->signal();
disk->signal(); printer->signal();

! Deadlock occurs when two or more
processes are each waiting for an event
that will never occur, since it can only be
generated by another process in that set

! Deadlock is one of the more difficult
problems that OS designers face

! As we examine various approaches to
dealing with deadlock, notice the
tradeoffs between how well the approach
solves the problem, and its performance
/OS overhead

2 Fall 2007, Chapter 07

Deadlock (cont.)

! OS must distribute system resources
among competing processes:

! CPU cycles preemptable

! Memory space preemptable

! Files non-preemptable

! I/O devices (printer) non-preemptable

! A request for a type of resource can be
satisfied by any resource of that type

! Use any 100 bytes in memory

! Use either one of two identical printers

! Process requests resource(s), uses
it/them, then releases it/them

! We will assume here that the resource is
re-usable; it is not consumed

! Waits if resource is not currently available

3 Fall 2007, Chapter 07

Deadlock Conditions

! These 4 conditions are necessary and
sufficient for deadlock to occur:

! Mutual exclusion — if one process holds
a resource, other processes requesting
that resource must wait until the process
releases it (only one can use it at a time)

! No preemption — resources are
released voluntarily; neither another
process nor the OS can force a process
to release a resource

! Hold and wait — processes are allowed
to hold one (or more) resource and be
waiting to acquire additional resources
that are being held by other processes

! Circular wait — there must exist a set of
waiting processes such that P0 is waiting
for a resource held by P1, P1 is waiting
for a resource held by P2, … Pn-1 is
waiting for a resource held by Pn, and Pn
is waiting for a resource held P0

4 Fall 2007, Chapter 07

Resource-Allocation Graph

! The deadlock conditions can be modeled
using a directed graph called a resource-
allocation graph (RAG)

! 2 kinds of nodes:

! Boxes — represent resources

– Instances of the resource are represented
as dots within the box

! Circles — represent processes

! 2 kinds of (directed) edges:

! Request edge — from process to resource
— indicates the process has requested
the resource, and is waiting to acquire it

! Assignment edge — from resource
instance to process — indicates the
process is holding the resource instance

! When a request is made, a request edge
is added

! When request is fulfilled, the request edge
is transformed into an assignment edge

! When process releases the resource, the
assignment edge is deleted

5 Fall 2007, Chapter 07

Interpreting a RAG
With Single Resource Instances

! If the graph does not contain a cycle,
then no deadlock exists

! If the graph does contain a cycle,
then a deadlock does exist

! With single resource instances,
a cycle is a necessary and sufficient
condition for deadlock

p2p1 p3

r1 r2

r3 r4

p2p1 p3

r1 r2

r3 r4

6 Fall 2007, Chapter 07

Dealing with Deadlock

! The Ostrich Approach — stick your head
in the sand and ignore the problem

! Deadlock prevention — prevent deadlock
from occurring by eliminating one of the 4
deadlock conditions

! Deadlock avoidance algorithms —
consider resources currently available,
resources allocated to each process, and
possible future requests, and only fulfill
requests that will not lead to deadlock

! Deadlock detection algorithms — detect
when deadlock has occurred

! Deadlock recovery algorithms — break
the deadlock

7 Fall 2007, Chapter 07

Deadlock Prevention

! Basic idea: ensure that one of the 4
conditions for deadlock can not hold

! Mutual exclusion — if one process
holds a resource, other processes
requesting that resource must wait until
the process releases it

! Hard to avoid mutual exclusion for non-
sharable resources

! Printers

! Files

! I/O devices or network connections

! For printer, avoid mutual exclusion
through spooling — then process won!t
have to wait on physical printer

! However, many resources are sharable,
so deadlock can be avoided for them

! Read-only files (binaries, perhaps)

! Most files in your account

8 Fall 2007, Chapter 07

Deadlock Prevention
(cont.)

! No preemption — resources are
released voluntarily; neither another
process nor the OS can force a process
to release a resource

! To avoid, allow preemption

! If process A requests resources that aren!t
available, see who holds those resources

– If the holder (process B) is waiting on
additional resources, preempt the
resource requested by process A

– Otherwise, process A has to wait

» While waiting, some of its current
resources may be preempted

» Can only wake up when it acquires
the new resources plus any
preempted resources

! If a process requests a resource that can
not be allocated to it, all resources held by
that process are preempted

– Can only wake up when it can acquire all
the requested resources

! Only works for resources whose state can
be saved/restored (memory, not printer)

9 Fall 2007, Chapter 07

Deadlock Prevention
(cont.)

! Hold and wait — processes are allowed
to hold one (or more) resource and be
waiting to acquire additional resources
that are being held by other processes

! To avoid, ensure that whenever a
process requests a resource, it doesn!t
hold any other resources

! Request all resources (at once) at
beginning of process execution

– Process which loops forever?

! Request all resources (at once) at any
point in the program

! To get a new resource, release all current
resources, then try to acquire new one
plus old ones all at once

! Difficult to know what to request in
advance

! Wasteful; ties up resources and reduces
resource utilization

! Starvation is possible

10 Fall 2007, Chapter 07

Deadlock Prevention
(cont.)

! Circular wait — there must exist a set of
waiting processes such that P0 is waiting
for a resource held by P1, P1 is waiting
for a resource held by P2, … Pn-1 is
waiting for a resource held by Pn, and Pn
is waiting for a resource held P0

! To avoid, impose a total order on all
resources, and require process to request
resource in that order

! Order: disk drive, printer, CDROM

! Process A requests disk drive, then printer

! Process B requests disk drive, then printer

! Process B does not request printer, then
disk drive, which could lead to deadlock

! Order should be in the logical sequence
that the resources are usually acquired

! Allow process to release all resources,
and start request sequence over

! Or force process to request total number
of each resource in a single request

11 Fall 2007, Chapter 07

Deadlock Avoidance — Motivation

! Example to motivate a D.A. algorithm:

! state p — neither process running

! state q — scheduler ran A

! state r — scheduler ran B

! state s — scheduler ran A, A requested
and received printer

! state t — schedule ran B

safesafe

safe

safe

safe

unsafe

un-
reachable

process
A

process
B

p q

r

s

t

I1 I2 I3 I4

I5

I6

I7

I8

printer

plotter

printer

plotter

(both
processes
finished)

u

12 Fall 2007, Chapter 07

Deadlock Avoidance — Motivation
(cont.)

! Look at shaded areas:

! The one shaded “\\\” represents both
processes using printer at same time —
this is not allowed by mutual exclusion

! Other (“///”) is similar, involving plotter

! Look at box marked “unsafe”

! If OS enters this box, it will eventually
deadlock because it will have to enter a
shaded (illegal mutual exclusion) region

! All paths must proceed up or right (why?)

! Box is unsafe — should not be entered!

! From state t, must avoid the unsafe area
by going to the right (up to I4) (blocking B)

! At state t, the OS must decide whether or
not to grant B!s request

! A good choice will avoid deadlock!

! Need to know resource needs in advance

13 Fall 2007, Chapter 07

Deadlock Avoidance —
Safe and Unsafe States

! State (a) is safe, meaning there exists a
sequence of allocations that allows all

processes to complete:

! B runs, asks for 2 more resources, 1 free

! B finishes, releases its resources, 5 free

! C runs, asks for 5 more resources, 0 free

! C finishes, releases its resources, 7 free

! A runs, gets 6 more, everyone done…

A 3 9

B 2 4

C 2 7

free: 3
(a)

Has Max

A 3 9

B 4 4

C 2 7

free: 1
(b)

Has Max

A 3 9

B 0 —

C 2 7

free: 5
(c)

Has Max

A 3 9

B 0 —

C 7 7

free: 0
(d)

Has Max

A 3 9

B 0 —

C 0 —

free: 7
(e)

Has Max

A 9 9

B 0 —

C 0 —

free: 1
(f)

Has Max

A 0 —

B 0 —

C 0 —

free: 10
(g)

Has Max

14 Fall 2007, Chapter 07

Deadlock Avoidance —
Safe and Unsafe States (cont.)

! Suppose we start in state (a), and reach
state (b) by giving A another resource

! B runs, asks for 2 more resources, 0 free

! B finishes, releases its resources, 4 free

! C can!t run — might want 5 resources

! Same for A

! State (b) is unsafe, meaning that from
there, deadlock may eventually occur

! State (b) is not a deadlocked state — the
system can still run for a bit

! Deadlock may not occur — A might
release one of its resources before asking
for more, which allows C to complete

A 3 9

B 2 4

C 2 7

free: 3
(a)

Has Max

A 4 9

B 2 4

C 2 7

free: 2
(b)

Has Max

A 4 9

B 4 4

C 2 7

free: 0
(c)

Has Max

A 4 9

B 0 —

C 2 7

free: 4
(d)

Has Max

15 Fall 2007, Chapter 07

The Banker!s Algorithm for Single
Resources (Dijkstra, 1965)

! A banker has granted lines of credit to
customers A, B, C, and D (unit is $1000)

! She knows it!s not likely they will all need
their maximum credit at the same time, so
she keeps only 10 units of cash on hand

! At some point in time, the bank is in state
(b) above, which is safe

! Can let C finish, have 4 units available

! Then let B or D finish, etc.

! But… if banker gives B one more unit
(state (c) above), state would be unsafe
— if everyone asks for maximum credit,
no requests can be fulfilled

B 0 5

C 0 4

D 0 7

free: 10
(a)

Has Max

B 1 5

C 2 4

D 4 7

free: 2
(b)

Has Max

B 2 5

C 2 4

D 4 7

free: 1
(c)

Has Max

A 0 6 A 1 6 A 1 6

16 Fall 2007, Chapter 07

The Banker!s Algorithm for Single
Resources (cont.)

! Resource-request algorithm:

! The banker considers each request as it
occurs, determining whether or not
fulfilling it leads to a safe state

! If it does, the request is granted

! Otherwise, it is postponed until later

! Safety algorithm:

! To determine if a state is safe, the banker
checks to see if she has enough
resources to satisfy some customer

! If so, she assumes those loans will be
repaid (i.e., the process will use those
resources, finish, and release all of its
resources), and she checks to see if she
has enough resources to satisfy another
customer, etc.

! If all loans can eventually be repaid, the
state is safe and the initial request can be
granted

17 Fall 2007, Chapter 07

Evaluation of Deadlock Avoidance
Using the Banker!s Algorithm

! Advantages:

! No need to preempt resources and
rollback state (as in deadlock detection &
recovery)

! Less restrictive than deadlock prevention

! Disadvantages:

! Maximum resource requirement for each
process must be stated in advance

! Processes being considered must be
independent (i.e., unconstrained by
synchronization requirements)

! There must be a fixed number of
resources (i.e., can!t add resources,
resources can!t break) and processes
(i.e., can!t add or delete processes)

! Huge overhead — must use the algorithm
every time a resource is requested

18 Fall 2007, Chapter 07

Interpreting a RAG With Single
Resource Instances (Review)

! If the graph does not contain a cycle,
then no deadlock exists

! If the graph does contain a cycle,
then a deadlock does exist

! With single resource instances,
a cycle is a necessary and sufficient
condition for deadlock

p2p1 p3

r1 r2

r3 r4

p2p1 p3

r1 r2

r3 r4

19 Fall 2007, Chapter 07

Deadlock Detection
(Single Resource of Each Type)

! If all resources have only a single
instance, deadlock can be detected by
searching the resource-allocation graph
for cycles

! Silberschatz defines a simpler graph,
called the wait-for graph, and searches
that graph instead

! The wait-for graph is the resource-
allocation graph, minus the resources

! An edge from p1 to p2 means p1 is
waiting for a resource that p2 holds (here
we don!t care which resource is involved)

! One simple algorithm:

! Start at each node, and do a depth-first
search from there

! If a search ever comes back to a node it!s
already found, then it has found a cycle

20 Fall 2007, Chapter 07

Interpreting a RAG
With Multiple Resource Instances

! If the graph does not contain a cycle,
then no deadlock exists

! If the graph does contain a cycle,
then a deadlock may exist

! With multiple resource instances,
a cycle is a necessary (but not
sufficient) condition for deadlock

p2p1 p3

r1 r2

r3 r4

p2p1 p3

r1 r2

r3 r4

21 Fall 2007, Chapter 07

Interpreting a RAG With
Multiple Resource Instances (cont.)

! If the graph does contain a knot (and a
cycle), then a deadlock does exist

! If the graph does not contain a knot,
then a deadlock does not exist

! With multiple resource instances,
a knot is a sufficient condition for
deadlock

p2p1 p3

r1 r2

r3 r4

p2p1 p3

r1 r2

r3 r4

22 Fall 2007, Chapter 07

Deadlock Detection
(Multiple Resources of Each Type)

! This algorithm (Coffman, 1971) uses the
following data structures:

! n processes, m types of resources

! Existing Resources vector tells number
of resources of each type that exist

! Available Resources vector tells number
of resources of each type that are
available (unassigned to any process)

! i-th row of Current Allocation matrix tells
number of resources of each type
allocated (assigned) to process i

Existing Resources Available Resources

(E1, E2, E3, …, Em) (A1, A2, A3, …, Am)

Current Allocation

C11 C12 C13 C1m…

C21 C22 C23 C2m…

Cn1 Cn2 Cn3 Cnm…

.

.

.

.

.

.

.

.

.

.

.

.

Request

R11 R12 R13 R1m…

R21 R22 R23 R2m…

Rn1 Rn2 Rn3 Rnm…

.

.

.

.

.

.

.

.

.

.

.

.

23 Fall 2007, Chapter 07

Deadlock Detection
(Multiple Resources of Each Type)

(cont.)

! Every resource is either allocated or
available

! Number of resources of type j that have
been allocated to all processes, plus
number of resources of type j that are
available, should equal number of
resources of type j in existence

! Processes may have unfulfilled requests

! i-th row of Request matrix tells number of
resources of each type process i has
requested, but not yet received

! Notation: comparing vectors

! If A and B are vectors, the relation A ! B

means that each element of A is less than
or equal to the corresponding element of
B (i.e., A ! B iff Ai ! Bi for 0 ! i ! m)

! Furthermore, A < B iff A ! B and A " B

24 Fall 2007, Chapter 07

Deadlock Detection Algorithm
(Multiple Resources of Each Type)

! Operation:

! Every process is initially unmarked

! As algorithm progresses, processes will
be marked, which indicates they are able
to complete, and thus are not deadlocked

! When algorithm terminates, any
unmarked processes are deadlocked

! Algorithm:

1. Look for an unmarked process Pi for
which the i-th row of the Request matrix
is less than or equal to the Available
vector

2. If such a process is found, add the i-th
row of the Current matrix to the
Available vector, mark the process, and
go back to step 1

3. If no such process exists, the algorithm
terminates

25 Fall 2007, Chapter 07

Deadlock Detection Example
(Multiple Resources of Each Type)

! Whose request can be fulfilled?

! Process 1 — no — no CDROM available

! Process 2 — no — no printer available

! Process 3 — yes — give it the requested
resources, and after it completes and
releases those resources, A = (2 2 2 0)

! Process 1 still can!t run (no CDROM), but
process 2 can run, giving A = (4 2 2 1)

! Process 1 can run, giving A = (4 2 3 1)

Existing Resources Available Resources

(2 1 0 0)

Request

2 0 0 1

1 0 1 0

2 1 0 0

(4 2 3 1)

Current Allocation

0 0 1 0

2 0 0 1

0 1 2 0

resources = (tape drive plotter printer CDROM)

26 Fall 2007, Chapter 07

After Deadlock Detection:
Deadlock Recovery

! How often does deadlock detection run?

! After every resource request?

! Less often (e.g., every hour or so, or
whenever resource utilization gets low)?

! What if OS detects a deadlock?

! Terminate a process

! All deadlocked processes

! One process at a time until no deadlock

– Which one?

– One with most resources?

– One with less cost?

» CPU time used, needed in future

» Resources used, needed

– That!s a choice similar to CPU scheduling

! Is it acceptable to terminate process(es)?

– May have performed a long computation

» Not ideal, but OK to terminate it

– Maybe have updated a file or done I/O

» Can!t just start it over again!

27 Fall 2007, Chapter 07

After Deadlock Detection:
Deadlock Recovery (cont.)

! Any less drastic alternatives?

! Preempt resources

! One at a time until no deadlock

! Which “victim”?

– Again, based on cost, similar to CPU
scheduling

! Is rollback possible?

– Preempt resources — take them away

– Rollback — “roll” the process back to
some safe state, and restart it from there

» OS must checkpoint the process
frequently — write its state to a file

– Could roll back to beginning, or just
enough to break the deadlock

» This second time through, it has to
wait for the resource

» Has to keep multiple checkpoint files,
which adds a lot of overhead

! Avoid starvation

– May happen if decision is based on same
cost factors each time

– Don!t keep preempting same process (i.e.,
set some limit)

28 Fall 2007, Chapter 07

Evaluating the Approaches to
Dealing with Deadlock

! The Ostrich Approach — ignoring the
problem

! Good solution if deadlock isn!t frequent

! Deadlock prevention — eliminating one
of the 4 deadlock conditions

! May be overly restrictive

! Deadlock avoidance — only fulfilling
requests that will not lead to deadlock

! Need too much a priori information, not
very dynamic (can!t add processes or
resources), huge overhead

! Deadlock detection and recovery —
detect when deadlock has occurred, then
break the deadlock

! Tradeoff between frequency of detection
and performance / overhead added

