
1 Fall 2007, Chapter 08

Memory Management in a
Uniprogrammed System

! OS gets a fixed segment of memory

(usually highest memory)

! One process executes at a time in a

single memory segment

! Process is always loaded at address 0

! Compiler and linker generate physical
addresses

! Maximum address = memory size – OS
size

A

OS

B

OS

C

OS

0

2200

2400

1200

0

2200

2400

700

0

2200

2400

1700

address main
memory

address main
memory

address main
memory

2 Fall 2007, Chapter 08

Classifying Information
Stored in Memory

! Binding time (when is space allocated?):

! Static: before program starts running

! Program code, static global variables

(initialized and uninitialized)

! Dynamic: as program runs

! Procedure stack, dynamic storage (space

allocated by malloc or new)

! UNIX view of a process!s memory

(doesn!t consider threads):

stack

code

static variables
(uninitialized,

initialized)

dynamic storage
(from new, malloc)

max
address

address
0

stack segment

data segment

text segment

bss segment

heap

3 Fall 2007, Chapter 08

Segments of a Process

! Process! memory is divided into logical

segments (text, data, bss, heap, stack)

! Who assigns memory to segments?

! Compiler and assembler generate an
object file each source file

! Linker combines all the object files for a
program into a single executable object
file, which is complete and self-sufficient

! Regroup all the segments from each file

together (one big data segment, etc.)

! Adjust addresses to match regrouping

! Result is an executable program

! Loader (part of OS) loads an executable
object file into memory at location(s)
determined by the operating system

! Program (as it runs) uses new and malloc
to dynamically allocate memory, gets
space on stack during function calls

4 Fall 2007, Chapter 08

Processing a User Program

5 Fall 2007, Chapter 08

Why is Linking Difficult?

! When assembler assembles a file, it may

find external references — symbols it

doesn!t know about (e.g., printf, scanf)

! Compiler just puts in an address of 0 when
producing the object code

! Compiler records external symbols and
their location (in object file) in a patch list,
and stores that list in the object file

! Linker must resolve those external
references as it links the files together

! Compiler doesn!t know where program will
go in memory (if multiprogramming,

always 0 for uniprogramming)

! Compiler just assumes program starts at 0

! Compiler records relocation information
(location of addresses to be adjusted
later), and stores it in the object file

6 Fall 2007, Chapter 08

Loading

! The loader loads the completed program

into memory where it can be executed

! Loads code and initialized data segments
into memory at specified location

! Leaves space for uninitialized data (bss)

! Returns value of start address to
operating system

! Alternatives in loading

! Absolute loader — loads executable file at
fixed location

! Relocatable loader — loads the program
at an memory location specified by OS

! Assembler and linker assume program will

start at location 0

! When program is loaded, loader modifies

all addresses by adding the real start

location to those addresses

! Static Relocation vs. dynamic relocation

7 Fall 2007, Chapter 08

Static Relocation

! Put the OS in the highest memory

! Compiler and linker assume each

process starts at address 0

! At load time, the OS:

! Allocates the process a segment of
memory in which it fits completely

! Adjusts the addresses in the processes to
reflect its assigned location in memory

0

2200

2400

1200

A

OS

0

2200

2400

1200

A

OS

B

1900

address main
memory

address main
memory

8 Fall 2007, Chapter 08

Static vs. Dynamic Relocation

! Problems with static relocation:

! Safety — not satisfied — one process
can access / corrupt another!s memory,
can even corrupt OS!s memory

! Processes can not change size (why…?)

! Processes can not move after beginning
to run (why would they want to?)

! Used by MS-DOS, and early versions of
Windows and Mac OS

! An alternative: dynamic relocation

! The basic idea is to change each memory
address dynamically as the process runs

! Translation done by hardware — between
the CPU and the memory is a memory
management unit (MMU) that converts
logical addresses to physical addresses

! This translation happens for every

memory reference the process makes

9 Fall 2007, Chapter 08

Dynamic Relocation

! There are now two different views of the

address space:

! The physical address space — seen only
by the OS — is as large as there is
physical memory on the machine

! The logical address space —seen by the
process — can be as large as the
instruction set architecture allows

! For now, we!ll assume it!s much smaller

than the physical address space

! Multiple processes share the physical
memory, but each can see only its own
logical address space

! The OS and hardware must now manage

two different addresses:

! Logical address — seen by the process

! Physical address — address in physical
memory (seen by OS)

10 Fall 2007, Chapter 08

Implementing Dynamic Relocation

! MMU protects address space, and

translates logical addresses

! Base register holds base physical address
of process, limit register holds highest
logical address of process

! Translation:
physical address = logical address + base

! Protection:
if logical address > limit, then trap to the
OS with an address exception

+ >
base

(relocation)
register

limit
register

virtual address

physical address address error
exception —
trap to OS

MMU

11 Fall 2007, Chapter 08

Dynamic Relocation —
OS vs. User Programs

! User programs (processes) address their

own logical memory

! Run in relocation mode — indicated by a
bit in the PSW — and in user mode

! User programs can not change the

relocation mode

! OS directly addresses physical memory

! OS runs with relocation turned off, and in
kernel mode

! When user program makes a system call:

! CPU atomically goes into kernel mode,
turns off relocation, traps to trap handler

! OS trap handler accesses physical
memory and does whatever is necessary
to service the system call

! CPU atomically turns on relocation, goes
into user mode, returns to user program

12 Fall 2007, Chapter 08

Dynamic Relocation and Partitioning

! Physical memory is divided into partitions

! A process is loaded into a free partition (a
“hole” in the memory space)

! Fixed-size partitions:

! Memory is divided into a predetermined
number of fixed-size partitions

! Partitions may be either of equal size, or

of different (although fixed) sizes

! Use first-fit, best-fit, etc. to keep track of
holes (see upcoming slide)

! Number of partitions limits the degree of
multiprogramming — number of active
processes

! Dynamic (variable-size) partitions:

! When a process gets brought into
memory, it is allocated a partition of
exactly the right size

13 Fall 2007, Chapter 08

Effect of Dynamic Relocation with
Dynamic Partitioning

14 Fall 2007, Chapter 08

Managing the Free List

! Dynamic relocation and partitioning

maintains a free list to keep track of all

the holes

! Algorithms to manage the free list:

! Best fit

! Keep linked list of free blocks

! Search the whole list at each allocation

! Choose the hole that comes the closest to

matching the request size

– Any unused space becomes a new

(smaller) hole

! When freeing memory, combine adjacent

holes

! Any way to do this efficiently?

! First fit

! Scan the list for the first hole that is large

enough, choose that hole

! Otherwise, same as best fit

! Which is better? Why??

15 Fall 2007, Chapter 08

Swapping
(Medium-Term Scheduling)

! If there isn!t room enough in memory for

all processes, some processes can be

swapped out to make room

! OS swaps a process out by storing its
complete state to disk

! OS can reclaim space used (not really…)
by ready or blocked processes

! When process becomes active again, OS
must swap it back in (into memory)

! With static relocation, the process must
be replaced in the same location

! With dynamic relocation, OS can place
the process in any free partition (must
update the relocation and limit registers)

! Swapping and dynamic relocation make

it easy to increase the size of a process
and to compact memory (although slow!)

16 Fall 2007, Chapter 08

UNIX Process Model
(From Lecture 06)

Figure from Operating Systems, 2nd edition, Stallings, Prentice Hall, 1995

Original diagram from The Design of the UNIX Operating System, M.

Bach, Prentice Hall, 1986

17 Fall 2007, Chapter 08

Evaluation of Dynamic Relocation

! Advantages:

! OS can easily move a process

! OS can allow processes to grow

! Hardware changes are minimal, but fairly
fast and efficient

"Transparency, safety, and efficiency are
all satisfied, although there is some small
overhead to dynamic relocation

! Disadvantages:

! Compared to static relocation, memory
addressing is slower due to translation

! Memory allocation is complex (partitions,
holes, fragmentation, etc.)

! If process grows, OS may have to move it

! Process limited to physical memory size

! Not possible to share code or data
between processes

18 Fall 2007, Chapter 08

Segmentation

! Basic idea — using the programmer!s

view of the program, divide the process

into separate segments in memory

! Each segment has a distinct purpose:

! Example: code, static data, heap, stack

– Maybe a separate segment for each

function or object

! Segments may be of different sizes

! Stack and heap don!t conflict

! The whole process is still loaded into
memory, but the segments that make up
the process do not have to be loaded
contiguously into memory

! Space within a segment is contiguous

! Each segment has protection bits

! Read-only segment (code)

! Read-write segments (data, heap, stack)

! Allows processes to share code and data

19 Fall 2007, Chapter 08

Segment Addresses

! Logical address consists of:

! Segment number

! Offset from beginning of that segment

! Both are generated by the assembler

! What is stored in the instruction?

! Simple method:

! Top bits of address specify segment

! Bottom bits of address specify offset

! Implicit segment specification:

! Segment is selected implicitly by the

instruction being executed (code vs. data)

! Examples: PDP-11, Intel 386/486

! Explicit segment specification:

! Instruction prefix can request that a

specific segment be used

! Example: Intel 386/486…

! Most common technique

20 Fall 2007, Chapter 08

Implementing Segments

! A segment table keeps track of every

segment in a particular process

! Each entry contains base and limit

! Also contains protection information
(sharing allowed, read vs. read/write)

! Additional hardware support required:

! Multiple base and limit registers, or

! Segment table base register (points to a
segment table stored in a PCB)

virtual address

seg offset

segment table

base limit

seg

physical address

base offset
access
physical
memory

<
address

error
exception

21 Fall 2007, Chapter 08

Segmentation Example

22 Fall 2007, Chapter 08

Managing Segments

! When a process is loaded into memory:

! Allocate space in physical memory for all
of the process!s segments

! Create a (mostly empty) segment table,
and store it in the process!s PCB

! When a context switch occurs:

! Update the segment table base register
to point to the segment table in the new
process!s PCB

! If there!s no space in physical memory:

! Compact memory (move segments,
update bases) to make contiguous space

! Tradeoff efficiency for overhead

! Swap one or more segments out to disk

! To run that process again, swap all of its

segments back into memory

23 Fall 2007, Chapter 08

Managing Segments
(cont.)

! To enlarge a segment:

! If space above the segment is free, OS
can just update the segment!s limit and
use some of that space

! Move this segment to a larger free space

! Swap the segment above this one to disk

! Swap this segment to disk, and bring it
back into a larger free space

! Advantages of segmentation:

! Segments don!t have to be contiguous

! Segments can be swapped independently

! Segments allow sharing

! Disadvantages of segmentation:

! Complex memory allocation (first-fit, etc.)

! External fragmentation

24 Fall 2007, Chapter 08

Sharing Segments

25 Fall 2007, Chapter 08

Paging

! Compared to segmentation, paging:

! Makes allocation and swapping easier

! No external fragmentation

! Each process is divided into a number of

small, fixed-size partitions called pages

! Physical memory is divided into a large
number of small, fixed-size partitions
called frames

! Pages have nothing to do with segments

! Page size = frame size

! Usually 512 bytes to 16K bytes

! The whole process is still loaded into
memory, but the pages of a process do
not have to be loaded into a contiguous
set of frames

! Logical address consists of page number
and offset from beginning of that page

26 Fall 2007, Chapter 08

Implementing Paging

! A page table keeps track of every page

in a particular process

! Each entry contains the corresponding
frame in main (physical) memory

! Can add protection bits, but not as useful

! Additional hardware support required is

slightly less than for segmentation

! No need to keep track of, and compare
to, limit. Why not?

virtual address

page offset

page table

frame

page

physical address

frame offset
access
physical
memory

27 Fall 2007, Chapter 08

Paging Example

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

frame
number

main
memory

fifteen available frames

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

frame
number

main
memory

load process A (4 pages)

A.0
A.1
A.2
A.3

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

frame
number

main
memory

load process B (3 pages)

A.0
A.1
A.2
A.3
B.0
B.1
B.2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

frame
number

main
memory

load process C (4 pages)

A.0
A.1
A.2
A.3
B.0
B.1
B.2
C.0
C.1
C.2
C.3

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

frame
number

main
memory

swap B out (blocked)

A.0
A.1
A.2
A.3

C.0
C.1
C.2
C.3

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

frame
number

main
memory

load process D (5 pages)

A.0
A.1
A.2
A.3

C.0
C.1
C.2
C.3

D.0
D.1
D.2

D.3
D.4

0
1
2
3

0
1
2
3

page table
for Process A

0
1
2

page table
for Process B

7
8
9

10

0
1
2
3

page table
for Process C

4
5
6

0
1
2

page table
for Process D

13
14

list of
free frames

113
124

28 Fall 2007, Chapter 08

Paging Example
(cont.)

program D process D

page 0

page 1

page 2

page 3

page 4

1501

4292 bytes
long

828 bytes
unused

5120 bytes
long

0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

relative address within program:
1501

0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

virtual address:
page# = 1, offset = 478

478

0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

virtual address:
page# = 1, offset = 478

4
5
6

page table
for Process D

11
12

0
1
2
3
4

0 0 0 1 0 1 0 1 1 1 0 1 1 1 1 0

physical address:
frame# = 5, offset = 478

29 Fall 2007, Chapter 08

Managing Pages and Frames

! OS usually keeps track of free frames in

memory using a bit map

! A bit map is just an array of bits

! 1 means the frame is free

! 0 means the frame is allocated to a page

! To find a free frame, look for the first 1 bit
in the bit map

! Most modern instruction sets have an

instruction that returns the offset of the

first 1 bit in a register

! Keep page tables in memory, use page

table base register (special register) to

point to page table of active process

! Saved/restored as part of context switch

! Page table also contains:

! Other bits for demand paging (discussed

next time)

30 Fall 2007, Chapter 08

Evaluation of Paging

! Advantages:

! Easy to allocate memory — keep a list of
available frames, and simply grab first
one that!s free

! Easy to swap — pages, frames, and often
disk blocks as well, all are same size

! One frame is just as good as another!

! Disadvantages:

! Page tables are fairly large

! Most page tables are too big to fit in

registers, so they must live in physical

memory

! This table lookup adds an extra memory

reference for every address translation

! Internal fragmentation

! Always get a whole page, even for 1 byte

! Larger pages makes the problem worse

! Average = 1/2 page per process

31 Fall 2007, Chapter 08

Address Translation, Revisited

! A modern microprocessor and OS has

maybe a 32 bit logical address space per

process (232 = 4 GB)

! If page size is 4k (212), 32–12=20,
meaning each page table could have up
to 220 (approximately 1 million) page
entries, each maybe 4 bytes long = 4MB

! Problem: page table is too large to store
in one page, can!t store contiguously

! Two-level page tables: page tables are

also stored in each process! logical

memory

! New problem: memory access time may
double since the page tables are now
subject to paging

! (one access to get info from page table,

plus one access to get data from memory)

! New solution: use a special cache (called

a Translation Lookaside Buffer (TLB)) to

cache page table entries

32 Fall 2007, Chapter 08

Two-Level Page Table

33 Fall 2007, Chapter 08

Translation Look-Aside Buffer

34 Fall 2007, Chapter 08

Paging and Segmentation

! Use two levels of mapping:

! Process is divided into variable-size
segments

! Segments are logical divisions as before

! Each segment is divided into many small
fixed-size pages

! Pages are easy for OS to manage

! Eliminates external fragmentation

! Logical address = segment, page, offset

! One segment table per process, one
page table per segment

! Sharing at two levels: segment, page

! Share frame by having same frame
reference in two page tables

! Share segment by having same base in
two segment tables

! Still need protection bits (sharing, r/o, r/w)

