
1 Fall 2007, Chapter 09

Topics in Memory Management

! Uniprogrammed operating systems

! Assembling, linking, loading

! Static memory allocation

! Dynamic memory allocation

! Stacks, heaps

! Multiprogrammed operating systems

! Includes most of the above topics

! Static relocation

! Dynamic relocation

! Logical vs. physical address

! Partitioning

! Segmentation

! Paging

! Swapping

! Virtual memory / demand paging

2 Fall 2007, Chapter 09

Memory Management So Far

! An application's view of memory is its

logical address space

! The OS!s view of memory is the physical

address space

! A MMU (hardware) is used to implement

segmentation, paging, or a combination

of the two, by translating addresses for

the CPU

! Limitation until now — all segments /

pages of a process must be in main

(physical) memory for it to run

! Insight — at a given time, we probably

only need to access some small subset

of process!s logical memory

! Load pages / segments on demand

3 Fall 2007, Chapter 09

Demand Paging (Virtual Memory)

! At a given time, a virtual memory page

will be stored either:

! In a frame in physical memory

! On disk (backing store, or swap space)

! A process can run with only part of its

virtual address space in main memory

! Provide illusion of almost infinite memory

virtual
memory

physical
memory

MMU

disk (swap space)

4 Fall 2007, Chapter 09

Loading a New Process

! Processes are started with 0 or more of

their virtual pages in physical memory,

and the rest on the disk

! Page selection — when are new pages
brought into physical memory?

! Prepaging — pre-load enough to get
started: code, static data, one stack page
(DEC ULTRIX)

! Demand paging — start with 0 pages,
load each page on demand (when a page
fault occurs) (most common approach)

! Disadvantage: many (slow) page faults

when program starts running

! Demand paging works due to the
principle of locality of reference

! Knuth estimated that 90% of a program!s
time is spent in 10% of the code

5 Fall 2007, Chapter 09

Page Faults

! An attempts to access a page that!s not

in physical memory causes a page fault

! Page table must include a present bit
(sometimes called valid bit) for each page

! An attempt to access a page without the
present bit set results in a page fault, an
exception which causes a trap to the OS

! When a page fault occurs:

! OS must page in the page — bring it from

disk into a free frame in physical memory

! OS must update page table & present bit

! Faulting process continues execution

! Unlike interrupts, a page fault can occur

any time there!s a memory reference

! Even in the middle of an instruction!
(how? and why not with interrupts??)

! However, handling the page fault must be
invisible to the process that caused it

6 Fall 2007, Chapter 09

Handling Page Faults

! The page fault handler must be able to

recover enough of the machine state (at

the time of the fault) to continue

executing the program

! The PC is usually incremented at the

beginning of the instruction cycle

! If OS / hardware doesn!t do anything
special, faulting process will execute the
next instruction (skipping faulting one)

! With hardware support:

! Test for faults before executing instruction
(IBM 370)

! Instruction completion — continue where
you left off (Intel 386…)

! Restart instruction, undoing (if necessary)
whatever the instruction has already done
(PDP-11, MIPS R3000, DEC Alpha, most
modern architectures)

8 Fall 2007, Chapter 09

Performance of Demand Paging

! Effective access time for demand-paged

memory can be computed as:

eacc = (1–p)(macc) + (p)(pfault)

where:

p = probability that page fault will occur

macc = memory access time

pfault = time needed to service page fault

! With typical numbers:

eacc = (1–p)(100) + (p)(25,000,000)
= 100 + (p)(24,999,900)

! If p is 1 in 1000,
eacc = 25,099.9 ns (250 times slower!)

! To keep overhead under 10%,
110 > 100 + (p)(24,999,900)

! p must be less than 0.0000004

! Less than 1 in 2,5000,000 memory

accesses must page fault!
9 Fall 2007, Chapter 09

Page Replacement

! When the OS needs a frame to allocate

to a process, and all frames are busy, it

must evict (copy to backing store) a page

from its frame to make room in memory

! Reduce overhead by having CPU set a
modified / dirty bit to indicate that a page
has been modified

! Only copy data back to disk for dirty pages

! For non-dirty pages, just update the page

table to refer to copy on disk

! Which page to we choose to replace?

Some page replacement policies:

! Random

! Pick any page to evict

! FIFO

! Evict the page that has been in memory

the longest (use a queue to keep track)

! Idea is to give all pages “fair” (equal) use

of memory

10 Fall 2007, Chapter 09

Page Replacement

11 Fall 2007, Chapter 09

Page Replacement Policy

! When OS needs a frame to use, and all

are busy, which page does it evict?

! Random

! Pick any page to evict

! FIFO

! Evict the page that has been in memory

the longest (use a queue to keep track)

! Optimal (Minimal)

! Evict the page that will be referenced the

farthest into the future

– Requires knowledge of future

! Cannot really be implemented

– Useful for evaluating other policies

! Least-Recently-Used (LRU)

! Use the past to predict the future

! Evict the page that has been unreferenced

for the longest period of time

12 Fall 2007, Chapter 09

Page Reference Example

! Assumptions: 4 pages, 3 frames

Page references: ABCABDADBCB

frame 1

frame 2

frame 3

A B C A B D A D B C BFIFO

frame 1

frame 2

frame 3

A B C A B D A D B C BOptimal

frame 1

frame 2

frame 3

A B C A B D A D B C BLRU

14 Fall 2007, Chapter 09

Implementing LRU

! A perfect implementation would be

something like this:

! Associate a clock register with every
page in physical memory

! Update the clock value at every access

! During replacement, scan through all the
pages and find the one with the lowest
value in its clock register

! What!s wrong with all this?

! Simple approximations:

! FIFO

! Not-recently-used (NRU)

! Use an R (reference) bit, and set it

whenever a page is referenced

! Clear the R bit periodically, such as every

clock interrupt

! Choose any page with a clear R bit to

evict

15 Fall 2007, Chapter 09

Implementing LRU (cont.)

! Clock / Second Chance Algorithm

! Use an R (reference) bit as before

! On a page fault, circle around the “clock”
of all pages in the user memory pool

! Start after the page examined last time

! If the R bit for the page is set, clear it

! If the R bit for the page is clear, replace

that page and set the bit

! Questions:

! Can it loop forever?

! What does it mean if the “hand” is moving

slowly? …if the hand is moving quickly?

! Least Frequently Used (LFU) / N-th

Chance Algorithm

! Don!t evict a page until hand has swept
by N times

! Use an R bit and a counter

! How is N chosen? Large or small?
16 Fall 2007, Chapter 09

Frame Allocation

! How many frames does each process

get (M frames, N processes)?

! At least 2 frames (one for instruction, one
for memory operand), maybe more…

! Maximum is number in physical memory

! Allocation algorithms:

! Equal allocation

! Each gets M / N frames

! Proportional allocation

! Number depends on size and priority

! Which pool of frames is used for

replacement?

! Local replacement

! Process can only reuse its own frames

! Global replacement

! Process can reuse any frame (even if

used by another process)

17 Fall 2007, Chapter 09

Thrashing

! Consider what happens when memory

gets overcommitted:

! After each process runs, before it gets a
chance to run again, all of its pages may
get paged out

! The next time that process runs, the OS
will spend a lot of time page faulting, and
bringing the pages back in

! All the time it!s spending on paging is time

that it!s not getting useful work done

! With demand paging, we wanted a very

large virtual memory that would be as fast

as physical memory, but instead we!re

getting one that!s as slow as the disk!

! This wasted activity due to frequent

paging is called thrashing

! Analogy — student taking too many
courses, with too much work due

18 Fall 2007, Chapter 09

Working Sets

! Thrashing occurs when the sum of all

processes! requirement is greater than

physical memory

! Solution — use local page frame

replacement, don!t let processes compete

– Doesn!t help, as an individual process can

still thrash

! Solution — only give a process the

number of frames that it “needs”

– Change number of frames allocated to

each process over time

– If total need is too high, pick a process and

suspend it

! Working set (Denning, 1968) — the
collection of pages that a process is

working with, and which must be resident

in main memory, to avoid thrashing

! Always keep working set in memory

! Other pages can be discarded as
necessary

