
1 Fall 2007, Chapter 10

File System Abstraction

! Levels of abstraction:

! The hardware underneath:

Diagram from Computer Science, Volume 2, J. Stanley Warford, Heath, 1991.

User
Interface

Device-
Independent

Interface

Device
Interface

applications daemons servers

open() close()
read() write()

link()rename()

create()

delete()

tracks sectors blocks

seek() readblock() writeblock()

 other hardwaredisk

2 Fall 2007, Chapter 10

File System Issues

! Important to the user:

! Persistence — data stays around
between power cycles and crashes

! Ease of use — can easily find, examine,
modify, etc. data

! Efficiency — uses disk space well

! Speed — can get to data quickly

! Protection — others can!t corrupt (or
sometimes even see) my data

! OS provides:

! File system with directories and naming
— allows user to specify directories and
names instead of location on disk

! Disk management — keeps track of
where files are located on the disk,
accesses those files quickly

! Protection — no unauthorized access

3 Fall 2007, Chapter 10

User Interface to the File System

! A file is a logical unit of storage:

! A series of records (IBM mainframes)

! A series of bytes (UNIX, most PCs)

! A resource fork and data fork (Macintosh)

! Resource fork — labels, messages, etc.

! Data fork — code and data

! What is stored in a file?

! C++ source code, object files, executable
files, shell scripts, PostScript…

! Macintosh OS explicitly supports file
types — TEXT, PICT, etc.

! Windows uses file naming conventions —
“.exe” and “.com” for executables, etc.

! UNIX looks at contents to determine type:

! Shell scripts — start with “#”

! PostScript — starts with “%!PS-Adobe…”

! Executables — starts with magic number

4 Fall 2007, Chapter 10

File Operations

! Create(name)

! Constructs a file descriptor on disk to
represent the newly created file

! Adds an entry to the directory to
associate name with that file descriptor

! Allocates disk space for the file

! Adds disk location to file descriptor

! fileId = Open(name, mode)

! Allocates a unique identifier called the file
ID (identifier) (returned to the user)

! Sets the mode (r, w, rw) to control
concurrent access to the file

! Close(fileId)

! Delete(fileId)

! Deletes the file!s file descriptor from the
disk, and removes it from the directory

5 Fall 2007, Chapter 10

Common File Access Patterns

! Sequential access

! Data is processed in order, one byte at a
time, always going forward

! Most accesses are of this form

! Example: compiler reading a source file

! Direct / random access

! Can access any byte in the file directly,
without accessing any of its predecessors

! Example: accessing database record 12

! Keyed access

! Can access a byte based on a key value

! Example: database search, dictionary

! OS does not support keyed access

! User program must determine the address

from the key, then use random access

(provided by the OS) into the file

6 Fall 2007, Chapter 10

File Operations (cont.)

! Read(fileId, from, size, bufAddress)

! Random access read

! Reads size bytes from file fileId, starting
at position from, into the buffer specified
by bufAddress

for (pos=from, i=0 ; i < size ; i++)
*bufAddress[i] = file[pos++];

! Read(fileId, size, bufAddress)

! Sequential access read

! Reads size bytes from file fileId, starting
at the current file position fp, into the
buffer specified by bufAddress, and then
increments fp by size

 for (pos=fp, i=0 ; i < size ; i++)
*bufAddress[i] = file[pos++];

fp += size;

! Write — similar to Read

7 Fall 2007, Chapter 10

Directories and Naming

! Directories of named files

! User and OS must have some way to
refer to files stored on the disk

! OS wants to use numbers (index into an
array of file descriptors) (efficient, etc.)

! User wants to use textual names
(readable, mnemonic, etc.)

! OS uses a directory to keep track of
names and corresponding file indices

! Simple naming

! One name space for the entire disk

! Every name must be unique

! Implementation:

! Store directory on disk

! Directory contains <name, index> pairs

! Used by early mainframes, early
Macintosh OS, and MS DOS

8 Fall 2007, Chapter 10

Directories and Naming
(cont.)

! User-based naming

! One name space for each user

! Every name in that user!s directory must

be unique, but two different users can use

the same name for a file in their directory

! Used by TOPS-10 (DEC mainframe from
the early 1980s)

! Multilevel naming

! Tree-structured name space

! Implementation:

! Store directories on disk, just like files

! Each directory contains <name, index>

pairs in no particular order

– The file pointed to by a directory can be

another directory

» Names have “/” separating levels

– Resulting structure is a tree of directories

! Used by UNIX

! More on UNIX disk structures next time…

