
Name: _____________________________

1

CS 4/53201 Exam #2 Operating Systems

Friday 13 November 1998

1. Define each of the following terms. (5 points each = 25 points)

a . mutual exclusion

Allowing only one thread at a time to perform a particular operation or execute a particular
section of code (the critical section)

b . atomic operation

An operation that must be completed indivisibly — without interruption once it starts

c . busy waiting

Waiting in a loop doing nothing until some particular condition is met

d . CPU burst

Time spent by a thread executing on the CPU before it blocks or terminates (note that this is
not the same as the thread’s total execution time)

e . hold and wait

One of the four necessary and sufficient conditions for deadlock; it refers to a process
holding one resource and waiting to acquire another

2. Consider this definition of semaphores, which we will call version 1:

 wait(s): signal(s):
s = s – 1 s = s + 1
if (s < 0) if (s <= 0)

block the thread that called wait wake up a waiting thread
else

continue into critical section

Also consider this definition, which we will call version 2:

 wait(s): signal(s):
if (s <= 0) if (a thread is waiting)

block the thread that called wait wake up a waiting thread
s = s – 1 s = s + 1
continue into critical section

How do these two definitions compare? Assuming they’re implemented
correctly (as atomic operations, etc.), do they both work? If not, which one
doesn’t work, and why? If they do both work, is there any difference between
them? (10 points)

Name: _____________________________

2

Yes, both work. The main difference is that in version 1 the semaphore can take on negative
values, and the absolute value of a negative value tells the number of threads blocked. In
version 2, the semaphore can’t go below 0, so to know the number of threads blocked the OS
would have to look at the length of the queue.

3. Lock ACQUIRE and RELEASE operations can be implemented fairly directly
using semaphore WAIT and SIGNAL operations, respectively. Can condition
variable WAIT and SIGNAL operations also be implemented using semaphore
WAIT and SIGNAL operations, respectively? Explain your answer. (15
points)

No, for two main reasons. First, condition variable operations are designed to work within
locks, so a condition variable WAIT operation releases the lock before it sleeps; a semaphore
WAIT operation would not do this. Second, condition variables do not have a value, whereas
semaphores do, so if a semaphore SIGNAL occurs before a semaphore WAIT, the WAIT does
not wait, but if a condition variable SIGNAL occurs before a condition variable WAIT, the
WAIT still waits (it always waits!).

4. For each of the following scheduling algorithms, (i) clearly indicate when the
CPU scheduler is invoked, and (ii) briefly explain the criteria used by the
CPU scheduler to pick the next process to execute. (5 points each =15 points)

a. FCFS scheduling

Scheduler is invoked when the running process blocks or terminates.

CPU scheduler picks the process at the head of the ready queue.

b. Nachos scheduler

Scheduler is invoked when the running process blocks (sleeps), terminates, or yields.

CPU scheduler picks the process at the head of the ready queue.

c. SRT scheduling

Scheduler is invoked when the running process blocks or terminates, or when a new or
blocked process enters the ready queue.

CPU scheduler picks the process with the shortest remaining CPU time (predicted).

5. One method for dealing with deadlock is detection and recovery.

a . Explain how deadlock can be detected in a system with single instances of
each resource type. (15 points)

Sketch of answer: you should explain either a RAG or WFG, how to search it for cycles,
and why a cycle indicates deadlock. See Lecture 20 for details.

Name: _____________________________

3

b . Explain how deadlock can be detected in a system with multiple instances
of each resource type. (15 points)

Sketch of answer: you should explain about keeping track of available resources, and
current allocation and request for each process, and marking processes that can be
completed. See Lecture 20 for details.

Or: you could explain about knots, and why a knot indicates deadlock. However, we
didn’t examine any algorithms in class for searching for knots, so this is a slightly less-
satisfactory answer.

