What is an Operating System?
(Review)

m An operating system (OS) is the interface
between the user and the hardware

¢ It implements a virtual machine that is
easier to program than bare hardware

m An OS provides standard services (an
interface) which are implemented on the
hardware, including:

e Processes, CPU scheduling, memory
management, file system, networking

m The OS coordinates multiple
applications and users (multiple
processes) in a fair and efficient manner

“>The goal in OS development is to make
the machine convenient to use (a
software engineering problem) and
efficient (a system and engineering
problem)
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History of Operating Systems

m Phase 0 — hardware is a very expensive
experiment; no operating systems exist

1. One user at console

m One function at a time (computation, I/O,
user think/response)

m Program loaded via card deck
— Libraries of device drivers (for 1/0)
m User debugs at console

m Phase 1 — hardware is expensive,
humans are cheap

2. Simple batch processing: load program,
run, print results, dump, repeat

m User gives program (cards or tape) to the
operator, who schedules the jobs

m Resident monitor automatically loads,
runs, dumps user jobs

m Requires memory management
(relocation) and protection

m More efficient use of hardware, but
debugging is more difficult (from dumps)
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History of Operating Systems (cont.)

m Phase 1 — hardware is expensive,
humans are cheap

3. Overlapped CPU & I/O operations
m First: buffer slow I/O onto fast tape drives
connected to CPU, replicate I/0O devices
m Later: spool data to disk

4. Multiprogrammed batch systems
m Multiple jobs are on the disk,waiting to run
m Multiprogramming — run several
programs at the “same” time

— Pick some jobs to run (scheduling), and
put them in memory (memory
management)

— Run one job; when it waits on something
(tape to be mounted, key to be pressed),
switch to another job in memory

m First big failures:

— MULTICS announced in 1963, not
released until 1969

— IBM’s OS/360 released with 1000 known
bugs
m OS design should be a science, not an art
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History of Operating Systems (cont.)

m Phase 2 — hardware is less expensive
than before, humans are expensive

5. Interactive timesharing

m Lots of cheap terminals, one computer
— All users interact with system at once
— Debugging is much easier

m Disks are cheap, so put programs and

data online

— 1 punch card = 100 bytes
— 1MB = 10K cards
— 0OS/360 was several feet of cards

m New problems:

— Need preemptive scheduling to maintain
adequate response time
— Need to avoid thrashing (swapping
programs in and out of memory too often)
— Need to provide adequate security
measures
m Success: UNIX developed at Bell Labs so
a couple of computer nerds (Thompson,
Ritchie) could play Star Trek on an unused
PDP-7 minicomputer

Fall 1998, Lecture 02




History of Operating Systems (cont.)

m Phase 3 — hardware is very cheap,
humans are expensive

6. Personal computing

m CPUs are cheap enough to put one in
each terminal, yet powerful enough to be
useful

— Computers for the masses!

m Return to simplicity; make OS simpler by
getting rid of support for
multiprogramming, concurrency, and
protection

m Modern operating systems are:

¢ Enormous
m Small OS = 100K lines of code
m Big OS = 10M lines

e Complex (100-1000 person year of work)

e Poorly understood (outlives its creators,
too large for one person to comprehend)
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History Lessons

m None of these operating systems were
particularly bad; each depended on
tradeoffs made at that point in time

e Technology changes drive OS changes

m Since 1953, there has been about 9
orders of magnitude of change in almost
every computer system component

e Unprecedented! In past 200 years, gone
from horseback (10 mph) to Concorde
(1000 mph), only 2 orders of magnitude

m Changes in “typical” academic computer:

1981 1996
MIPS 1 400
price / MIPS $100,000 $50
memory 128 KByte 64 MByte
disk 10 MByte 4 GByte
network 9600 bit/sec 155 Mb/s
address bits 16 64
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Modern OS Functionality
(Review)

m Concurrency
e Multiple processes active at once
e Processes can communicate

e Processes may require mutually-
exclusive access to some resource

¢ CPU scheduling, resource management

m Memory management — allocate
memory to processes, move processes
between disk and memory

m File system — allocate space for storage
of programs and data on disk

m Networks and distributed computing —
allow computers to work together

m Security & protection
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More Recent Developments

m Parallel operating systems
e Shared memory, shared clock

¢ Large number of tightly-coupled
processors

e Appearance of single operating system

m Distributed operating systems
e No shared memory, no shared clock

e Small number of loosely-coupled
processors

e Appearance of single operating system is
ideal goal, but not realized in practice

e May try to simulate a shared memory

m Real-time operating systems

o Meet hard / soft real-time constraints on
processing of data

8 Fall 1998, Lecture 02




