What is an Operating System?
(Review)

m An operating system (OS) is the interface
between the user and the hardware

¢ It implements a virtual machine that is
easier to program than bare hardware

m An OS provides standard services (an
interface) which are implemented on the
hardware, including:

e Processes, CPU scheduling, memory
management, file system, networking

m The OS coordinates multiple
applications and users (multiple
processes) in a fair and efficient manner

“>The goal in OS development is to make
the machine convenient to use (a
software engineering problem) and
efficient (a system and engineering
problem)

Fall 1998, Lecture 02

History of Operating Systems

m Phase 0 — hardware is a very expensive
experiment; no operating systems exist

1. One user at console

m One function at a time (computation, I/O,
user think/response)

m Program loaded via card deck
— Libraries of device drivers (for 1/0)
m User debugs at console

m Phase 1 — hardware is expensive,
humans are cheap

2. Simple batch processing: load program,
run, print results, dump, repeat

m User gives program (cards or tape) to the
operator, who schedules the jobs

m Resident monitor automatically loads,
runs, dumps user jobs

m Requires memory management
(relocation) and protection

m More efficient use of hardware, but
debugging is more difficult (from dumps)

Fall 1998, Lecture 02

History of Operating Systems (cont.)

m Phase 1 — hardware is expensive,
humans are cheap

3. Overlapped CPU & I/O operations
m First: buffer slow I/O onto fast tape drives
connected to CPU, replicate I/0O devices
m Later: spool data to disk

4. Multiprogrammed batch systems
m Multiple jobs are on the disk,waiting to run
m Multiprogramming — run several
programs at the “same” time

— Pick some jobs to run (scheduling), and
put them in memory (memory
management)

— Run one job; when it waits on something
(tape to be mounted, key to be pressed),
switch to another job in memory

m First big failures:

— MULTICS announced in 1963, not
released until 1969

— IBM’s OS/360 released with 1000 known
bugs
m OS design should be a science, not an art

Fall 1998, Lecture 02

History of Operating Systems (cont.)

m Phase 2 — hardware is less expensive
than before, humans are expensive

5. Interactive timesharing

m Lots of cheap terminals, one computer
— All users interact with system at once
— Debugging is much easier

m Disks are cheap, so put programs and

data online

— 1 punch card = 100 bytes
— 1MB = 10K cards
— 0OS/360 was several feet of cards

m New problems:

— Need preemptive scheduling to maintain
adequate response time
— Need to avoid thrashing (swapping
programs in and out of memory too often)
— Need to provide adequate security
measures
m Success: UNIX developed at Bell Labs so
a couple of computer nerds (Thompson,
Ritchie) could play Star Trek on an unused
PDP-7 minicomputer

Fall 1998, Lecture 02

History of Operating Systems (cont.)

m Phase 3 — hardware is very cheap,
humans are expensive

6. Personal computing

m CPUs are cheap enough to put one in
each terminal, yet powerful enough to be
useful

— Computers for the masses!

m Return to simplicity; make OS simpler by
getting rid of support for
multiprogramming, concurrency, and
protection

m Modern operating systems are:

¢ Enormous
m Small OS = 100K lines of code
m Big OS = 10M lines

e Complex (100-1000 person year of work)

e Poorly understood (outlives its creators,
too large for one person to comprehend)

Fall 1998, Lecture 02

History Lessons

m None of these operating systems were
particularly bad; each depended on
tradeoffs made at that point in time

e Technology changes drive OS changes

m Since 1953, there has been about 9
orders of magnitude of change in almost
every computer system component

e Unprecedented! In past 200 years, gone
from horseback (10 mph) to Concorde
(1000 mph), only 2 orders of magnitude

m Changes in “typical” academic computer:

1981 1996
MIPS 1 400
price / MIPS $100,000 $50
memory 128 KByte 64 MByte
disk 10 MByte 4 GByte
network 9600 bit/sec 155 Mb/s
address bits 16 64

6 Fall 1998, Lecture 02

Modern OS Functionality
(Review)

m Concurrency
e Multiple processes active at once
e Processes can communicate

e Processes may require mutually-
exclusive access to some resource

¢ CPU scheduling, resource management

m Memory management — allocate
memory to processes, move processes
between disk and memory

m File system — allocate space for storage
of programs and data on disk

m Networks and distributed computing —
allow computers to work together

m Security & protection

7 Fall 1998, Lecture 02

More Recent Developments

m Parallel operating systems
e Shared memory, shared clock

¢ Large number of tightly-coupled
processors

e Appearance of single operating system

m Distributed operating systems
e No shared memory, no shared clock

e Small number of loosely-coupled
processors

e Appearance of single operating system is
ideal goal, but not realized in practice

e May try to simulate a shared memory

m Real-time operating systems

o Meet hard / soft real-time constraints on
processing of data

8 Fall 1998, Lecture 02

