What is an Operating System? (Review)

- An *operating system* (OS) is the interface between the user and the hardware
 - It implements a virtual machine that is easier to program than bare hardware
- An OS provides standard services (an interface) which are implemented on the hardware, including:
 - Processes, CPU scheduling, memory management, file system, networking
- The OS coordinates multiple applications and users (multiple processes) in a fair and efficient manner
- → The goal in OS development is to make the machine convenient to use (a software engineering problem) and efficient (a system and engineering problem)

Fall 1998, Lecture 02

History of Operating Systems (cont.)

- Phase 1 hardware is expensive, humans are cheap
 - 3. Overlapped CPU & I/O operations
 - First: buffer slow I/O onto fast tape drives connected to CPU, replicate I/O devices
 - Later: *spool* data to disk
 - 4. Multiprogrammed batch systems
 - Multiple jobs are on the disk, waiting to run
 - Multiprogramming run <u>several</u> programs at the "same" time
 - Pick some jobs to run (scheduling), and put them in memory (memory management)
 - Run one job; when it waits on something (tape to be mounted, key to be pressed), switch to another job in memory
 - First big failures:
 - MULTICS announced in 1963, not released until 1969
 - IBM's OS/360 released with 1000 known bugs
 - OS design should be a science, not an art

History of Operating Systems

- Phase 0 hardware is a very expensive experiment; no operating systems exist
 - 1. One user at console
 - One function at a time (computation, I/O, user think/response)
 - Program loaded via card deck
 - Libraries of device drivers (for I/O)
 - User debugs at console
- Phase 1 hardware is expensive, humans are cheap
 - 2. Simple batch processing: load program, run, print results, dump, repeat
 - User gives program (cards or tape) to the operator, who schedules the jobs
 - Resident monitor automatically loads, runs, dumps user jobs
 - Requires memory management (relocation) and protection
 - More efficient use of hardware, but debugging is more difficult (from dumps)

Fall 1998, Lecture 02

History of Operating Systems (cont.)

- Phase 2 hardware is less expensive than before, humans are expensive
 - 5. Interactive timesharing
 - Lots of cheap terminals, one computer
 - All users interact with system at once
 - Debugging is much easier
 - Disks are cheap, so put programs and data online
 - 1 punch card = 100 bytes
 - -1MB = 10K cards
 - OS/360 was several feet of cards
 - New problems:
 - Need preemptive scheduling to maintain adequate response time
 - Need to avoid thrashing (swapping programs in and out of memory too often)
 - Need to provide adequate security measures
 - Success: UNIX developed at Bell Labs so a couple of computer nerds (Thompson, Ritchie) could play Star Trek on an unused PDP-7 minicomputer

Fall 1998, Lecture 02

Fall 1998, Lecture 02

History of Operating Systems (cont.)

- Phase 3 hardware is very cheap, humans are expensive
 - 6. Personal computing
 - CPUs are cheap enough to put one in each terminal, yet powerful enough to be useful
 - Computers for the masses!
 - Return to simplicity; make OS simpler by getting rid of support for multiprogramming, concurrency, and protection
- Modern operating systems are:
 - Enormous
 - Small OS = 100K lines of code
 - Big OS = 10M lines
 - Complex (100-1000 person year of work)
 - Poorly understood (outlives its creators, too large for one person to comprehend)

Fall 1998, Lecture 02

Modern OS Functionality (Review)

- Concurrency
 - Multiple processes active at once
 - Processes can communicate
 - Processes may require mutuallyexclusive access to some resource
 - CPU scheduling, resource management
- Memory management allocate memory to processes, move processes between disk and memory
- File system allocate space for storage of programs and data on disk
- Networks and distributed computing allow computers to work together
- Security & protection

History Lessons

- None of these operating systems were particularly bad; each depended on tradeoffs made at that point in time
 - Technology changes drive OS changes
- Since 1953, there has been about 9 orders of magnitude of change in almost every computer system component
 - Unprecedented! In past 200 years, gone from horseback (10 mph) to Concorde (1000 mph), only 2 orders of magnitude
- Changes in "typical" academic computer:

	<u>1981</u>	<u> 1996</u>
MIPS	1	400
price / MIPS	\$100,000	\$50
memory	128 KByte	64 MByte
disk	10 MByte	4 GByte
network	9600 bit/sec	155 Mb/s
address bits	16	64

Fall 1998, Lecture 02

More Recent Developments

- Parallel operating systems
 - Shared memory, shared clock
 - Large number of tightly-coupled processors
 - Appearance of single operating system
- Distributed operating systems
 - No shared memory, no shared clock
 - Small number of loosely-coupled processors
 - Appearance of single operating system is ideal goal, but not realized in practice
 - May try to simulate a shared memory
- Real-time operating systems
 - Meet hard / soft real-time constraints on processing of data

Fall 1998, Lecture 02 8 Fall 1998, Lecture 02