Resource-Allocation Graph
(Review)

m The deadlock conditions can be modeled
using a directed graph called a resource-
allocation graph (RAG)

e 2 kinds of nodes:

m Boxes — represent resources

— Instances of the resource are represented
as dots within the box

m Circles — represent threads / processes

e 2 kinds of (directed) edges:

m Request edge — from process to resource
— indicates the process has requested
the resource, and is waiting to acquire it

m Assignment edge — from resource

instance to process — indicates the
process is holding the resource instance

e When a request is made, a request edge
is added
m When request is fulfilled, the request edge
is transformed into an assignment edge

m When process releases the resource, the
assignment edge is deleted

Fall 1998, Lecture 20

Interpreting a RAG With Single
Resource Instances (Review)

If the graph does not contain a cycle,
then no deadlock exists

r r2

N N
If the graph does contain a cycle,

1
S
I
3
then a deadlock does exist

With single resource instances,
acycle is a necessary and sufficient
condition for deadlock

Fall 1998, Lecture 20

Deadlock Detection
(Single Resource of Each Type)

m If all resources have only a single
instance, deadlock can be detected by
searching the resource-allocation graph
for cycles

¢ Silberschatz defines a simpler graph,
called the wait-for graph, and searches
that graph instead
m The wait-for graph is the resource-
allocation graph, minus the resources
m An edge from plto p2 means plis

waiting for a resource that p2 holds (here
we don’t care which resource is involved)

m One simple algorithm:

¢ Start at each node, and do a depth-first
search from there

o If a search ever comes back to a node it's
already found, then it has found a cycle

3 Fall 1998, Lecture 20

Interpreting a RAG
With Multiple Resource Instances

If the graph does not contain a cycle,
then no deadlock exists

o] [
S
|\0r30/\ |oro4.\

If the graph does contain a cycle,
then a deadlock may exist

With multiple resource instances,
acycleis anecessary (but not
sufficient) condition for deadlock

Fall 1998, Lecture 20

Interpreting a RAG With
Multiple Resource Instances (cont.)

If the graph does contain a knot (and a
cycle), then a deadlock does exist

If the graph does not contain a knot,
then a deadlock does not exist

With multiple resource instances,
a knot is a sufficient condition for
deadlock

Fall 1998, Lecture 20

Deadlock Detection
(Multiple Resources of Each Type)

m This algorithm (Coffman, 1971) uses the
following data structures:

Available Resources
(A1, A2, A3, ..., Am)

Existing Resources
(E1, E2,E3, ..., Em)

Current Allocation Request
Cll1 C12 C13 - Clm R11 R12 R13 -+ R1m
C21 C22 C23 -+ C2m R21 R22 R23 -+ R2m

Cnl Cn2 Cn3 -+ Cnm Rnl Rn2 Rn3 -+ Rnm

m n processes, m types of resources

e Existing Resources vector tells number
of resources of each type that exist

e Available Resources vector tells number
of resources of each type that are
available (unassigned to any process)

e i-th row of Current Allocation matrix tells
number of resources of each type
allocated (assigned) to process i

Fall 1998, Lecture 20

Deadlock Detection
(Multiple Resources of Each Type)
(cont.)

Every resource is either allocated or
available

e Number of resources of type j that have
been allocated to all processes, plus
number of resources of type j that are
available, should equal number of
resources of type j in existence

Processes may have unfulfilled requests

e i-th row of Request matrix tells number of
resources of each type process i has
requested, but not yet received

Notation: comparing vectors

o If A and B are vectors, the relation A< B
means that each element of A is less than
or equal to the corresponding element of
B (i.e.,, A<BIiff A;<B,; forO<i<m)

e Furthermore, A<BiffA<Band A#B

Fall 1998, Lecture 20

Deadlock Detection Algorithm
(Multiple Resources of Each Type)

m Operation:
e Every process is initially unmarked

¢ As algorithm progresses, processes will
be marked, which indicates they are able
to complete, and thus are not deadlocked

¢ When algorithm terminates, any
unmarked processes are deadlocked

m Algorithm:

1. Look for an unmarked process Pi for
which the i-th row of the Request matrix
is less than or equal to the Available
vector

2.1f such a process is found, add the i-th
row of the Current matrix to the
Available vector, mark the process, and
go back to step 1

3. 1f no such process exists, the algorithm
terminates

Fall 1998, Lecture 20

Deadlock Detection Example
(Multiple Resources of Each Type)

Existing Resources Available Resources

4231 (2100
Current Allocation Request
0010 2001
2001 1010
0120 2100

resources = (tape drive plotter printer CDROM)

m Whose request can be fulfilled?
e Process 1 — no — no CDROM available
e Process 2 — no — no printer available

e Process 3 — yes — give it the requested
resources, and after it completes and
releases those resources, A=(2 2 2 0)

e Process 1 still can’t run (no CDROM), but
process 2 can run, givingA=(4 2 2 1)

e Process 1canrun,givingA=(4 2 3 1)

9 Fall 1998, Lecture 20

After Deadlock Detection:
Deadlock Recovery

m How often does deadlock detection run?
o After every resource request?

e Less often (e.g., every hour or so, or
whenever resource utilization gets low)?

m What if OS detects a deadlock?

e Terminate a process
m All deadlocked processes
m One process at a time until no deadlock
— Which one?
— One with most resources?
— One with less cost?
» CPU time used, needed in future
» Resources used, needed
— That's a choice similar to CPU scheduling
m Is it acceptable to terminate process(es)?
— May have performed a long computation
» Not ideal, but OK to terminate it
— Maybe have updated a file or done 1/O
» Can't just start it over again!

10 Fall 1998, Lecture 20

After Deadlock Detection:
Deadlock Recovery (cont.)

m Any less drastic alternatives?

° Preempt resources
m One at a time until no deadlock
m Which “victim"?
— Again, based on cost, similar to CPU
scheduling
m Is rollback possible?
— Preempt resources — take them away

— Rollback — “roll” the process back to
some safe state, and restart it from there

» OS must checkpoint the process
frequently — write its state to afile

— Could roll back to beginning, or just
enough to break the deadlock

» This second time through, it has to
wait for the resource

» Has to keep multiple checkpoint files,
which adds a lot of overhead

m Avoid starvation

— May happen if decision is based on same
cost factors each time

— Don't keep preempting same process (i.e.,
set some limit)

11 Fall 1998, Lecture 20

