Resource-Allocation Graph
(Review)

m The deadlock conditions can be modeled
using a directed graph called a resource-
allocation graph (RAG)

e 2 kinds of nodes:

m Boxes — represent resources

— Instances of the resource are represented
as dots within the box

m Circles — represent threads / processes

e 2 kinds of (directed) edges:

m Request edge — from process to resource
— indicates the process has requested
the resource, and is waiting to acquire it

m Assignment edge — from resource

instance to process — indicates the
process is holding the resource instance

e When a request is made, a request edge
is added
m When request is fulfilled, the request edge
is transformed into an assignment edge

m When process releases the resource, the
assignment edge is deleted
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Interpreting a RAG With Single
Resource Instances (Review)

If the graph does not contain a cycle,
then no deadlock exists
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then a deadlock does exist

With single resource instances,
acycle is a necessary and sufficient
condition for deadlock
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Deadlock Detection
(Single Resource of Each Type)

m If all resources have only a single
instance, deadlock can be detected by
searching the resource-allocation graph
for cycles

¢ Silberschatz defines a simpler graph,
called the wait-for graph, and searches
that graph instead
m The wait-for graph is the resource-
allocation graph, minus the resources
m An edge from plto p2 means plis

waiting for a resource that p2 holds (here
we don’t care which resource is involved)

m One simple algorithm:

¢ Start at each node, and do a depth-first
search from there

o If a search ever comes back to a node it's
already found, then it has found a cycle
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Interpreting a RAG
With Multiple Resource Instances

If the graph does not contain a cycle,
then no deadlock exists
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If the graph does contain a cycle,
then a deadlock may exist

With multiple resource instances,
acycleis anecessary (but not
sufficient) condition for deadlock
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Interpreting a RAG With
Multiple Resource Instances (cont.)

If the graph does contain a knot (and a
cycle), then a deadlock does exist

If the graph does not contain a knot,
then a deadlock does not exist

With multiple resource instances,
a knot is a sufficient condition for
deadlock
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Deadlock Detection
(Multiple Resources of Each Type)

m This algorithm (Coffman, 1971) uses the
following data structures:

Available Resources
(A1, A2, A3, ..., Am)

Existing Resources
(E1, E2,E3, ..., Em)

Current Allocation Request
Cll1 C12 C13 - Clm R11 R12 R13 -+ R1m
C21 C22 C23 -+ C2m R21 R22 R23 -+ R2m

Cnl Cn2 Cn3 -+ Cnm Rnl Rn2 Rn3 -+ Rnm

m n processes, m types of resources

e Existing Resources vector tells number
of resources of each type that exist

e Available Resources vector tells number
of resources of each type that are
available (unassigned to any process)

e i-th row of Current Allocation matrix tells
number of resources of each type
allocated (assigned) to process i
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Deadlock Detection
(Multiple Resources of Each Type)
(cont.)

Every resource is either allocated or
available

e Number of resources of type j that have
been allocated to all processes, plus
number of resources of type j that are
available, should equal number of
resources of type j in existence

Processes may have unfulfilled requests

e i-th row of Request matrix tells number of
resources of each type process i has
requested, but not yet received

Notation: comparing vectors

o If A and B are vectors, the relation A< B
means that each element of A is less than
or equal to the corresponding element of
B (i.e.,, A<BIiff A;<B,; forO<i<m)

e Furthermore, A<BiffA<Band A#B
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Deadlock Detection Algorithm
(Multiple Resources of Each Type)

m Operation:
e Every process is initially unmarked

¢ As algorithm progresses, processes will
be marked, which indicates they are able
to complete, and thus are not deadlocked

¢ When algorithm terminates, any
unmarked processes are deadlocked

m Algorithm:

1. Look for an unmarked process Pi for
which the i-th row of the Request matrix
is less than or equal to the Available
vector

2.1f such a process is found, add the i-th
row of the Current matrix to the
Available vector, mark the process, and
go back to step 1

3. 1f no such process exists, the algorithm
terminates
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Deadlock Detection Example
(Multiple Resources of Each Type)

Existing Resources Available Resources

4231 (2100
Current Allocation Request
0010 2001
2001 1010
0120 2100

resources = (tape drive  plotter printer CDROM)

m Whose request can be fulfilled?
e Process 1 — no — no CDROM available
e Process 2 — no — no printer available

e Process 3 — yes — give it the requested
resources, and after it completes and
releases those resources, A=(2 2 2 0)

e Process 1 still can’t run (no CDROM), but
process 2 can run, givingA=(4 2 2 1)

e Process 1canrun,givingA=(4 2 3 1)
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After Deadlock Detection:
Deadlock Recovery

m How often does deadlock detection run?
o After every resource request?

e Less often (e.g., every hour or so, or
whenever resource utilization gets low)?

m What if OS detects a deadlock?

e Terminate a process
m All deadlocked processes
m One process at a time until no deadlock
— Which one?
— One with most resources?
— One with less cost?
» CPU time used, needed in future
» Resources used, needed
— That's a choice similar to CPU scheduling
m Is it acceptable to terminate process(es)?
— May have performed a long computation
» Not ideal, but OK to terminate it
— Maybe have updated a file or done 1/O
» Can't just start it over again!
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After Deadlock Detection:
Deadlock Recovery (cont.)

m Any less drastic alternatives?

° Preempt resources
m One at a time until no deadlock
m Which “victim"?
— Again, based on cost, similar to CPU
scheduling
m Is rollback possible?
— Preempt resources — take them away

— Rollback — “roll” the process back to
some safe state, and restart it from there

» OS must checkpoint the process
frequently — write its state to afile

— Could roll back to beginning, or just
enough to break the deadlock

» This second time through, it has to
wait for the resource

» Has to keep multiple checkpoint files,
which adds a lot of overhead

m Avoid starvation

— May happen if decision is based on same
cost factors each time

— Don't keep preempting same process (i.e.,
set some limit)
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