
31 August 1998

Operating Systems

Fall 1998
CS 43201 / 53201

Instructor
Dr. Robert A. Walker MSB 351, 672-4004 ext. 351
walker@mcs.kent.edu Office hours = Tu 1-3pm, Th 1-3pm, or by appt.

Teaching Assistant
To be determined…

Course Prerequisites
The 1998-1999 Undergraduate Catalog lists the prerequisites for this course as CS 33001 Data
Structures and CS 33003 Computer Organization and Assembly Language. Equivalent courses
taken elsewhere are also acceptable. It is also expected that you are moderately familiar with C++
classes and methods, as you will be writing and modifying C++ code in each of the projects.

Course Overview
The goal of this course is to provide an introduction to the internal operation of modern operating
systems. In particular, the course will cover processes and threads, mutual exclusion, CPU
scheduling, deadlock, memory management, and file systems. If time permits, we may briefly examine
networking and distributed computing. Students will use the Nachos instructional operating system
for several programming projects.

Textbook
The required textbook for this course is:

• Operating Systems Concepts, 5th edition, Silberschatz and Galvin, Addison-Wesley, 1998.

Other reasonable textbooks that you might want to refer to, if you have access to them, are:

• Modern Operating Systems, Tanenbaum, Prentice Hall, 1992.

• Operating Systems, 3rd edition, Stallings, Prentice Hall, 1998.

Class Web Page
The web page for this class is http://www.mcs.kent.edu/~walker/classes/os.f98. The web
page will contain link to the following course materials.

• Current class syllabus and schedule

• Lecture notes (in PostScript and Adobe PDF format)

• Homework and exam solutions

• Homework and programming project assignments, along with:

• Information about the Nachos operating system simulator

• Questions and answers about the assignment

Other information may be included as well. You might want to check the web page on a regular basis,
in particular when a programming project is outstanding.

2

Lectures
Students are expected to attend each lecture. I will not take roll, and I understand that it may
occasionally be necessary to miss a class, but in general I expect you to attend each lecture.

At each class, I will hand out one sheet of paper containing reduced copies of at most eight of my
slides for that lecture. If you would like to have reduced copies of all of my slides for that lecture, the
full version of the lecture notes will be on the class web page before the lecture, and you can print
them out. Note that you are not required to either look at or print out these notes; they are provided
solely for your convenience should you want them. However, you should not consider skimming
these notes to be an adequate substitute for attending the lecture, as they will contain only the text of
my slides, not the comments that I will make in class.

My lecture notes will be drawn from a variety of sources. The required text (OSC) will serve as a primary
reference, although some material may be drawn from other books on operating systems. I will also
use lecture notes from other professors as a reference, in particular notes by Kathryn McKinley,
Bradley Chen, Mendel Rosenblum, Tom Anderson (all based on an earlier set of notes by John
Ousterhout), and on notes by Divyakant Agrawal and Paul Farrell / Steve Chapin.

Homework Assignments and Programming Projects
There will be approximately four homework assignments and three programming projects during the
semester. The homework assignments will be pencil-and-paper based, while the projects will be
based on the Nachos instructional operating system, and will involve reading and writing code.
Tentative due dates are shown on the Class Schedule, attached at the end of this syllabus.

Nachos Programming Projects

The Nachos instructional operating system is written in C++ (actually, a subset of C++ that uses
classes and methods, but avoids troublesome C++ constructs like inheritance and overloading). If
you need quick refresher on C++, see the document “A Quick Introduction to C++” on the class web
page.

Late Policies

In general, you will have adequate time to complete each assignment. However, you should begin
work on each assignment early so that you will have plenty of time to become familiar with it and with
the Nachos code that you must read and/or modify, and so that you will have time to “sleep on” the
difficult parts. Waiting until two days before the due date to start the project is a bad idea.

For homework assignments, n o late homeworks will be accepted, unless you make prior
arrangements with me, or have a documented illness (in which case I expect you to contact me as
soon as possible).

For programming projects, late projects will be accepted with a 10% penalty for each day or
portion thereof that the project is late. Other extensions will not be granted, unless you make prior
arrangements with me, or have a documented illness (in which case I expect you to contact me as
soon as possible).

Exams
There will be three exams (held during class) and a final exam (held during finals week). The tentative
dates for the exams are shown on the Class Schedule, attached at the end of this syllabus. All exams
are closed book and closed notes, and must be individual work. It is expected that you take each
exam at the scheduled time, unless you make prior arrangements with me, or have a documented
illness (in which case I expect you to contact me as soon as possible).

3

Academic Integrity
Student-teacher relationships are built on trust. Students must trust that teachers have made
appropriate decisions about the structure and content of the courses they teach, and teachers must
trust that the assignments which students turn in are their own. Acts which violate this trust
undermine the educational process. In this course, the penalty for any act of academic dishonesty is
a final course grade of F.

Cooperation on Homework Assignments and Programming Projects

For both homework assignments and programming projects, I strongly believe that discussion with
your peers is an excellent way to learn. If you don’t understand something, discussing it with
someone who does can be far more productive than beating your head against the wall.

Having advocated discussion, then, I must be about clear what is allowed, and what is not. In general,
students are allowed to cooperate as follows: you are allowed to discuss with other students the
assignment, and general methods for solving the assignment. However, you are not allowed t o
work with someone else to actually solve the assignment, or to write code (even pseudocode) for a
program, and you are certainly not allowed to copy anyone else’s solution; doing any of these
things will be considered cheating, and will be grounds for failing the course.

Note that there is a fine line between discussion and cheating. If you are unsure what is allowed and
what isn’t, feel free to discuss the distinction with me, but if something feels uncomfortable, it’s
probably not allowed.

Finally, you should be careful not to give others access to your code. This means that you shouldn’t
keep your program in a publicly-accessible directory, you shouldn’t leave your terminal unattended,
and you shouldn’t forget to pick up your printouts.

Grades
Your final course grade will be broken down as follows:

• Homeworks (approximately 4) 20%

• Programming projects (approximately 3) 25% (although all may not be weighted equally)

• Exams (3) 30%

• Final exam 25%

The final course grade will be determined with A = 90–100, B = 80–99.99, etc. There will be no curve
at the end of the course, although individual exams, homeworks, etc. may occasionally (although
rarely) be curved. Thus you should always be able to determine how well you are doing in the course.

Credit for CS 43201 Versus Credit for CS 53201

This course is being offered at both the senior level (CS 43201) and the graduate level (CS 53201).
Grades will be determined separately for each level, with those students taking CS 53201 being held
to a higher standard of performance.

Students “Sitting In”

Students who want to unofficially “sit in” on the course, either to qualify for admission the CS graduate
program, or to prepare for the graduate Qualifying Exam, should contact me as soon as possible. In
general, I allow sit-ins, but will not grade any assignments or exams for anyone other than officially-
enrolled students. Any requests for graduate program references, etc. should be discussed with me
at the beginning of the course.

