Amdahl’s Law

Assumes that the speedup is not superliner; i.e.,
S(m)=tJ/t,<n

By Figure 1.29 (or slide #40),
t, < Ftg+ (1-0)

Substituting above values into the above equation
for S(n) and simplifying (see slide #41 or book)
yields 1
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Above inequality is known as Amdahl’s law.
See Slide #41 or Fig. 1.30 for related details.

Note that S(n) does not exceed //f for all and
approaches //f as a limit as » increases.

Example: If only 5% of the computation is serial,
the maximum speedup is 20, no matter how many
processors are used.
Observations: Amdahl’s law limitations to
parallelism:
— For a long time, Amdahl’s law was viewed as a
severe limit to the usefulness of parallelism.
— Note that the argument focuses on the steps in a
particular algorithm.
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— Gustafon’s Law: The proportion of the
computations that are sequential normally
decreases as the problem size increases.

— Also, Amdahl’s law does not apply to non-
standard problems were superlinearity occurs.

— For details on superlinearity, see Parallel
Computation: Models and Methods, Selim Akl,
pgs 14-20 (Speedup Folklore Theorem) and
Chapter 12.

More Metrics for Parallelism

Efficiency is defined by S(n)
n
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— Efficiency give the percentage of time that the
processors are effectively being used on the
computation.

Cost: The cost of a parallel algorithm or parallel
execution is defined by

Cost = (running time) X (Nr. of Processors)
= tp X n
— The cost of a parallel computation can be

compared to the running time of a sequential
computation.
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More Metrics (cont.)

— If a sequential algorithm is executed in parallel
and each PE does 1/n of the work in //n of the
sequential running time, then the parallel cost is
the same as the sequential running time.

Cost-Optimal Parallel Algorithm: A parallel
algorithm for a problem is said to be cost-optimal if
its cost is proportional to the running time of an
optimal sequential algorithm for the same problem.

— By proportional, we means that

cost =1, Xn =k xt,
where £ is a constant. (See pg 67 of text).
— Equivalently, a parallel algorithm is optimal if
parallel cost = O(f(t)),

where f(?) is the running time of the optimal
sequential algorithm.

— In cases where no optimal sequential algorithm
is known, then the “fastest known” sequential
algorithm is often used instead.

» Also, see pg 67 of text.
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Evaluating and Debugging Message-
Passing Programs

Most of this chapter concerns MPI and PVM,
which is being covered by Professor Walker.

An overview of Section 2.3 (Evaluating Parallel
Programs) and Section 2.4 (Debugging &
Evaluating Parallel Programs) using some slides
prepared by the textbook authors for Chapter 2 will
be given next.

Sections 2.3 and 2.4 are part of your reading
assignment. Some parts of 2.3 and 2.4 may also be
discussed as part of MPI & PVM programming, as
needed.
The author’s slides that will be used are as follows:
76-78, 81, 83, 85-90, 92-93.
It is anticipated that the authors’ slides for Ch. 2
will be posted in PDF at our website. Since the
coverage of these slides will be brief, it may be
simplest to review them online.
The Big-0O, Q, and © notation and related
definitions concerning complexity in Subsection
2.3.2 are standard concepts in basic algorithms. If
you are unfamiliar with any of these, you should
study this subsection carefully.
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