Amdahl’s Law

Assumes that the speedup is not superliner; i.e.,
S(m)=tJ/t,<n

By Figure 1.29 (or slide #40),
t, < Ftg+ (1-0)

Substituting above values into the above equation
for S(n) and simplifying (see slide #41 or book)
yields 1

Simys— " <
I+(m=-Df f

Above inequality is known as Amdahl’s law.
See Slide #41 or Fig. 1.30 for related details.

Note that S(n) does not exceed //f for all and
approaches //f as a limit as » increases.

Example: If only 5% of the computation is serial,
the maximum speedup is 20, no matter how many
processors are used.
Observations: Amdahl’s law limitations to
parallelism:
— For a long time, Amdahl’s law was viewed as a
severe limit to the usefulness of parallelism.
— Note that the argument focuses on the steps in a
particular algorithm.

Parallel Computers

— Gustafon’s Law: The proportion of the
computations that are sequential normally
decreases as the problem size increases.

— Also, Amdahl’s law does not apply to non-
standard problems were superlinearity occurs.

— For details on superlinearity, see Parallel
Computation: Models and Methods, Selim Akl,
pgs 14-20 (Speedup Folklore Theorem) and
Chapter 12.

More Metrics for Parallelism

Efficiency is defined by S(n)
n

E:tiszi
tp+n n

— Efficiency give the percentage of time that the
processors are effectively being used on the
computation.

Cost: The cost of a parallel algorithm or parallel
execution is defined by

Cost = (running time) X (Nr. of Processors)
= tp X n
— The cost of a parallel computation can be

compared to the running time of a sequential
computation.

Parallel Computers

More Metrics (cont.)

— If a sequential algorithm is executed in parallel
and each PE does 1/n of the work in //n of the
sequential running time, then the parallel cost is
the same as the sequential running time.

Cost-Optimal Parallel Algorithm: A parallel
algorithm for a problem is said to be cost-optimal if
its cost is proportional to the running time of an
optimal sequential algorithm for the same problem.

— By proportional, we means that

cost =1, Xn =k xt,
where £ is a constant. (See pg 67 of text).
— Equivalently, a parallel algorithm is optimal if
parallel cost = O(f(t)),

where f(?) is the running time of the optimal
sequential algorithm.

— In cases where no optimal sequential algorithm
is known, then the “fastest known” sequential
algorithm is often used instead.

» Also, see pg 67 of text.

Parallel Computers

Evaluating and Debugging Message-
Passing Programs

Most of this chapter concerns MPI and PVM,
which is being covered by Professor Walker.

An overview of Section 2.3 (Evaluating Parallel
Programs) and Section 2.4 (Debugging &
Evaluating Parallel Programs) using some slides
prepared by the textbook authors for Chapter 2 will
be given next.

Sections 2.3 and 2.4 are part of your reading
assignment. Some parts of 2.3 and 2.4 may also be
discussed as part of MPI & PVM programming, as
needed.
The author’s slides that will be used are as follows:
76-78, 81, 83, 85-90, 92-93.
It is anticipated that the authors’ slides for Ch. 2
will be posted in PDF at our website. Since the
coverage of these slides will be brief, it may be
simplest to review them online.
The Big-0O, Q, and © notation and related
definitions concerning complexity in Subsection
2.3.2 are standard concepts in basic algorithms. If
you are unfamiliar with any of these, you should
study this subsection carefully.

Parallel Computers




