
1 Fall 2000, Lecture 18

Sieve of Eratosthenes

n Find the prime numbers less than or
equal to some positive integer n

● Begin with a list of natural numbers
2, 3, 4, …, n

● Remove composite numbers from the list
by striking multiples of 2, 3, 5, and
successive primes

● After each striking, next unmarked natural
number is prime

● Sieve terminates after multiples of largest
prime less than or equal to have
been struck from the list

n Sequential algorithm

● Boolean array containing numbers being
sieved,integer corresponding largest
prime found so far, integer keeping track
of multiples of current prime

2 Fall 2000, Lecture 18

A Control-Parallel Approach

n Control parallelism refers to applying
different operations to different data
elements simultaneously

● Shared-memory MIMD,
Distributed-memory MIMD

n Control-parallel Sieve

● Each processor works with a different
prime, and is responsible for striking
multiples of that prime and identifying a
new prime number

● Each processor starts marking…

● Shared memory contain boolean array
containing numbers being sieved,integer
corresponding largest prime found so far

● PE’s local memories contain integer
keeping track of multiples of its current
prime (each working with different prime)

3 Fall 2000, Lecture 18

A Control-Parallel Approach
(cont.)

n Problems and inefficiencies:

● Processor accesses variable containing
current prime, searches for next
unmarked value, then updates variable
containing current prime
n Two processors could do this at once

● Processor could end up sieving multiples
of a composite number

n How much speedup can we get?

● Suppose n = 1000

● Sequential algorithm
n Multiples of 2: ((1000–4)+1)/2=997/2=498

n Multiples of 3: ((1000–9)+1)/3=992/3=330

n Sum = 1411 (number of “steps”)

● 2 PEs gives speedup 1411/706=2.00

● 3 PEs gives speedup 1411/499=2.83

● 4 PEs is same,so upper bound is 2.83
4 Fall 2000, Lecture 18

A Data-Parallel Approach

n Data parallelism refers to using multiple
PEs to apply the same operation to
different data elements simultaneously

● Shared-memory MIMD,
Distributed-memory MIMD,
Distributed-memory SIMD

n Data-parallel Sieve

● Each processor works with a same prime,
and is responsible for striking multiples of
that prime from a segment of the array of
natural numbers

● Assume we have p processors,
where p << sqrt(n)
n Each processor gets no more than

ceiling(n/p) natural numbers

n All primes less than sqrt(n), as well as first
prime greater than sqrt(n) are in list
controlled by first processor

5 Fall 2000, Lecture 18

A Data-Parallel Approach
(cont.)

n Data-parallel Sieve (cont.)

● Algorithm
n Processor 1 finds next prime, broadcasts it

to all PEs

n Each PE goes through their part of the
array, striking multiples of that prime
(performing same operation)

n Continues until first processor reaches a
prime greater than sqrt(n)

n How much speedup can we get?

● Suppose n = 1,000,000

● There are 168 primes less than 1,000, the
largest of which is 997

● Maximum execution time =
(ceil(ceil(1,000,000/50)/2)+
ceil(ceil(1,000,000/50)/3)+
ceil(ceil(1,000,000/50)/5)…)etime

● Communication time = 168(50–1)ctime

6 Fall 2000, Lecture 18

A Data-Parallel Approach
(cont.)

n How much speedup can we get? (cont.)

● Speedup is not directly proportional to the
number of PEs — it’s highest at 11 PEs
n Computation time is inversely proportional

to the number of processors used

n Communication time increases linearly

n After 11 processors, increase in
communication time is higher than
decrease in computation time, and total
execution time increases

● How about I/O time?
n Have to output 78,498 primes!

n I/O time is constant because output must
be performed sequentially

n This sequential code limits the speedup

n Amdahl’s law says that the fraction of
operations that must be performed
sequentially limits the maximum speedup
possible (more on this later in the course)

