Sieve of Eratosthenes

- Find the prime numbers less than or equal to some positive integer n
- Begin with a list of natural numbers

2, 3, 4, ..., n

- Remove composite numbers from the list by striking multiples of $2,3,5$, and successive primes
- After each striking, next unmarked natural number is prime
- Sieve terminates after multiples of largest prime less than or equal to have been struck from the list
- Sequential algorithm
- Boolean array containing numbers being sieved, integer corresponding largest prime found so far, integer keeping track of multiples of current prime

A Control-Parallel Approach

- Control parallelism refers to applying different operations to different data elements simultaneously
- Shared-memory MIMD, Distributed-memory MIMD
- Control-parallel Sieve
- Each processor works with a different prime, and is responsible for striking multiples of that prime and identifying a new prime number
- Each processor starts marking...
- Shared memory contain boolean array containing numbers being sieved, integer corresponding largest prime found so far
- PE's local memories contain integer keeping track of multiples of its current prime (each working with different prime)

A Control-Parallel Approach (cont.)

Problems and inefficiencies:

- Processor accesses variable containing current prime, searches for next unmarked value, then updates variable containing current prime
- Two processors could do this at once
- Processor could end up sieving multiples of a composite number

How much speedup can we get?

- Suppose $\mathrm{n}=1000$
- Sequential algorithm
- Multiples of 2: $((1000-4)+1) / 2=997 / 2=498$
- Multiples of $3:((1000-9)+1) / 3=992 / 3=330$
- Sum = 1411 (number of "steps")
- 2 PEs gives speedup 1411/706=2.00
- 3 PEs gives speedup 1411/499=2.83
- 4 PEs is same,so upper bound is 2.83

A Data-Parallel Approach

- Data parallelism refers to using multiple PEs to apply the same operation to different data elements simultaneously
- Shared-memory MIMD, Distributed-memory MIMD, Distributed-memory SIMD
- Data-parallel Sieve
- Each processor works with a same prime, and is responsible for striking multiples of that prime from a segment of the array of natural numbers
- Assume we have p processors, where $p \ll \operatorname{sqrt}(n)$
- Each processor gets no more than ceiling(n / p) natural numbers
- All primes less than sqrt(n), as well as first prime greater than $\operatorname{sqrt}(\mathrm{n})$ are in list controlled by first processor

A Data-Parallel Approach (cont.)

Data-parallel Sieve (cont.)

- Algorithm

- Processor 1 finds next prime, broadcasts it to all PEs
- Each PE goes through their part of the array, striking multiples of that prime (performing same operation)
- Continues until first processor reaches a prime greater than sqrt(n)

How much speedup can we get?

- Suppose $\mathrm{n}=1,000,000$
- There are 168 primes less than 1,000, the largest of which is 997
- Maximum execution time $=$ (ceil(ceil(1,000,000/50)/2)+ ceil(ceil(1,000,000/50)/3)+ ceil(ceil(1,000,000/50)/5)...)etime
- Communication time $=168(50-1)$ ctime

A Data-Parallel Approach (cont.)

- How much speedup can we get? (cont.)
- Speedup is not directly proportional to the number of PEs - it's highest at 11 PEs
- Computation time is inversely proportional to the number of processors used
- Communication time increases linearly
- After 11 processors, increase in communication time is higher than decrease in computation time, and total execution time increases
- How about I/O time?

■ Have to output 78,498 primes!

- I/O time is constant because output must be performed sequentially
- This sequential code limits the speedup
- Amdahl's law says that the fraction of operations that must be performed sequentially limits the maximum speedup possible (more on this later in the course)

