Intel Paragon XP/S Overview

- Scalable, heterogeneous, distributedmemory multicomputer, MIMD
- 2D array of nodes, performing both OS functionality as well as user computation
 - Main memory physically distributed among nodes (16-64 MB / node)
 - Each node contains two Intel i860 XP processors: application processor for user's program, message processor for inter-node communication
- Balanced design: speed and memory capacity matched to interconnection network, storage facilities, etc.
 - Interconnect bandwidth scales with number of nodes
 - Efficient even with thousands of processors

Paragon XP/S Node Interconnection

- 2D mesh chosen after extensive analytical studies and simulation
- Paragon Mesh Routing Chip (PMRC) / iMRC routes traffic in the mesh
 - 0.75 µm, triple-metal CMOS
 - Routes traffic in four directions and to and from attached node at > 200 MB/s
 - 40 ns to make routing decisions and close appropriate switches
 - Transfers are parity checked, router is pipelined, routing is deadlock-free
 - Backplane is active backplane of router chips rather than mass of cables

Paragon XP/S Nodes

- Network Interface Controller (NIC)
 - Connects node to its PMRC
 - Parity-checked, full-duplexed router with error checking
- Message processor
 - Intel i860 XP processor
 - Handles all details of sending / receiving a message between nodes, including protocols, packetization, etc.
 - Supports global operations including broadcast, synchronization, sum, min, and, or, etc.
- Application processor
 - Intel i860 XP processor (42 MIPS, 50 MHz clock) to execute user programs
- 16–64 MB of memory

Fall 2000, Lecture 21

Paragon XP/S Usage

- OS is based on UNIX, provides distributed system services and full UNIX to every node
 - System is divided into partitions, some for I/O, some for system services, rest for user applications
- Applications can run on arbitrary number of nodes without change
 - Run on larger number of nodes to process larger data sets or to achieve required performance
- Users have client/server access, can submit jobs over a network, or login directly to any node
 - Comprehensive resource control utilities for allocating, tracking, and controlling system resources

Fall 2000, Lecture 21

Paragon XP/S Programming	Connection Machine CM-5 Overview
 MIMD architecture, but supports various programming models: SPMD, SIMD, MIMD, shared memory, vector shared memory 	 Hundreds or thousands of processing nodes, each with its own memory SIMD or MIMD operation
<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>	<list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item>
Connection Machine CM-5 Overview (cont.)	CM-5 Nodes

8

7

Fall 2000, Lecture 21

CM-5 Networks

- Control Network
 - Tightly coupled communication services
 - Optimized for fast response, low latency
 - Functions: synchronizing processing nodes, broadcasts, reductions, parallel prefix operations
- Data Network
 - 4-ary hypertree, optimized for high bandwidth
 - Functions: point-to-point commn. for tens of thousands of items simultaneously
 - Responsible for eventual delivery of messages accepted
 - Network Interface connects nodes or control processors to the Control or Data Network (memory-mapped control unit)

Tree Networks (Reference Material)

- Binary Tree
 - 2^k-1 nodes arranged into complete binary tree of depth k-1
 - Diameter is 2(k–1)
 - Bisection width is 1
- Hypertree
 - Low diameter of a binary tree plus improved bisection width
 - Hypertree of degree k and depth d
 - From "front", looks like k-ary tree of height d
 - From "side", looks like upside-down binary tree of height d
 - Join both views to get complete network
 - 4-ary hypertree of depth d
 - 4^d leaves and $2^d(2^{d+1}-1)$ nodes
 - Diameter is 2d
 - Bisection width is 2^{d+1}

Fall 2000, Lecture 21

CM-5 Usage

- Runs Cmost, enhanced vers. of SunOS
- User task sees a control processor acting as a Partition Manager (PM), a set of processing nodes, and inter-processor communication facilities
 - User task is a standard UNIX process running on the PM, and one on each of the processing nodes
 - The CPU scheduler schedules the user task on all processors simultaneously
- User tasks can read and write directly to the Control Network and Data Network
 - Control Network has hardware for broadcast, reduction, parallel prefix operations, barrier synchronization
 - Data Network provides reliable, deadlockfree point-to-point communication

Fall 2000, Lecture 21

10

9