
Parallel Computers

1

Parallel Computers

• Reference: Chapter 1 of Parallel Programming text
by Wilkinson and Allen.

• Need for Parallelism

– Numerical modeling and simulation of
scientific and engineering problems.

– Solution for problems with deadlines

• Command & Control problems like ATC.

– Grand Challenge Problems

• Sequential solutions could take months or
years to run.

• Weather Prediction - Grand Challenge Problem

– Atmosphere is divided into 3D cells.

– Data such as temperature, pressure, humidity,
wind speed and direction, etc. are recorded at
regular time-intervals in each cell.

– There are about 5×108 cells of (1 mile) 3 .

– It would take a modern computer over 100 days
to perform necessary calculations for a ten day
forecast.

• Parallel Programming - a viable way to increase
computational speed.

– Overall problem is split into parts, each of
which are performed by a single processor.

Parallel Computers

2

– Ideally, n processors would have n times the
computational power of one processor, with
each doing 1/nth of the computation.

– Such gains in computational power is rare, due
to reasons such as

• Inability to partition the problem perfectly
into n parts of the same computational size.

• Necessary data transfer between the parts

• Necessary synchronization between parts.

• Two major styles of partitioning problems

– (Job) Control parallel programming

• Problem is divided into the different,
nonidentical tasks that have to be performed.

• The tasks are divided among the processors
so that their work load is roughly balanced.

• This is considered to be course grained
parallelism.

– Data parallel programming

• Each processor performs the same
computation on different data sets.

• Computations may or may not be
synchronous.

• This is considered to be fine grained
parallelism.

Parallel Computers

3

Shared Memory Multiprocessors (SMPs)

• All processors have access to all memory locations .

• The processors access memory through some type
of interconnection network.

• This type of memory access is called uniform
memory access (UMA) .

• A parallel programming language, based on a
language like FORTRAN or C/C++ may be
available.

• Alternately, programming using threads is
sometimes used.

• More programming details occur in Chapter 8.

• Difficulty for the SMP architecture to provide fast
access to all memory locations result in most SMPs
having hierarchial or distributed memory systems.

– This type of memory access is called
nonuniform memory access (NUMA).

• Normally, fast cache is used with NUMA systems
to reduce the problem of different memory access
time for PEs.

– This creates the problem of ensuring that all
copies of the same date in different memory
locations are identical.

– Numerous complex algorithms have been
designed for this problem.

Parallel Computers

4

(Message-Passing) Multicomputers

• Processors are connected by an interconnection
network.

• Each processor has a local memory and can only
access its own local memory.

• Data is passed between processors using messages,
as dictated by the program.

• Note: If the processors run in SIMD mode (i.e.,
synchronously), then the movement of the data
movements can be synchronous:

– Movement of the data can be controlled by
program steps.

– Much of the message-passing overhead (e.g.,
routing, hot-spots, headers, etc. can be avoided)

– Synchronous parallel computers are not usually
included in this group of parallel computers.

• A common approach to programming
multiprocessors is to use message-passing library
routines in addition to conventional sequential
programs (e.g., MPI, PVM)

• The problem is divided into independent processes
that can be executed concurrently. Each process
may be executed on a single processor.

• Multicomputers can be scaled to larger sizes much
better than shared memory multiprocessors.

Parallel Computers

5

Multicomputers (cont.)

• Programming disadvantages of message-passing

– Programmers must make explicit message-
passing calls in the code

– This is low-level programming and is error
prone.

– Data is not shared but copied, which increases
the total data size.

• Programming advantages of message-passing

– There is no problem with simultaneous access
to data.

– This allows different PCs to operate on the
same data independently.

– Allows PCs on a network to be easily upgraded
when faster processors become available.

• Mixed “distributed shared memory” systems.

– Is a combination of SMPs and multicomputers.

– Each PC has a local memory and the total local
memory is the collection of the local memories.

– Each memory location has a unique memory
address and can be accessed by each PC.

– Message-passing is used to access “non-local
memory” for a PC.

– Other mixed systems have been developed.

Parallel Computers

6

Flynn’s Classification Scheme

• SISD - single instruction stream, single data stream

– Primarily sequential processors

• MIMD - multiple instruction stream, multiple data
stream.

– Includes SMPs and multicomputers

– processors are asynchronous, since they can
independently execute different programs on
different data sets.

– Considered by most researchers to contain the
most powerful, least restricted computers.

– Have very serious message passing (or shared
memory) problems that are often ignored when

• compared to SIMDs

• when computing algorithmic complexity

– May be programmed using a multiple
programs, multiple data (MPMD) technique.

– If the number of processors are large, they are
normally programmed using a single program,
multiple data (SPMD) technique.

• SIMD - single instruction stream, multiple data
streams.

– One instruction stream is broadcast to all
processors.

Parallel Computers

7

Flynn’s Taxonomy (cont.)

• SIMD (cont.)

– Each processor is very simplistic and is
essentially an ALU; they do not store the
program nor have a program control unit.

– Individual processors can be inhibited from
participating in an instruction (based on a data
test).

– All active processor executes the same
instruction synchronously, but on different data
(from their own local memory).

– The data items form an array and an instruction
can act on the complete array in one cycle.

• MISD - Multiple Instruction streams, single data
stream.

– This category is not used very often.

– Some include pipelined architectures in this
category.

Parallel Computers

8

Interconnection Network Terminology

• A link is the connection between two nodes.

– A tightly arranged multicomputer with specially
designed interfaces is assumed (see fig 1.8)

– A switch that enables packets to be routed
through the node to other nodes without
disturbing the processor is assumed.

– The link between two nodes can be either
bidirectional or use two directional links .

– Either one wire to carry one bit or parallel wires
(one wire for each bit in word) can be used.

– The above choices do not have a major impact
on the concepts presented.

• The bandwidth is the number of bits that can be
transmitted in unit time (i.e., bits per second).

• The network latency is the time required to transfer
a message through the network.

• The communication latency is the total time
required to send a message, including software
overhead and interface delay.

• The message latency or startup time is the time
required to send a zero-length message.

– Software and hardware overhead, such as

• finding a route

• packing and unpacking the message

Parallel Computers

9

Network Terminology (cont)

• The diameter is the minimal number of links
between the two farthest nodes in the network.

– The diameter of a network gives the maximal
distance a single message may have to travel.

• The bisection width of a network is the number of
links that must be cut to divide the network of n
PEs into two (almost) equal parts, n/2 and n/2 .
--

Interconnection Network Examples

• Completely Connected Network

– Each of n nodes has a link to every other node.

– Requires n(n-1)/2 links

– Impractical, unless very few processors

• Line/Ring Network

– A line consists of a row of n nodes, with
connection to adjacent nodes.

– Called a ring when a link is added to connect
the two end nodes of a line.

– The line/ring networks have useful applications
(see chapter 5) .

Parallel Computers

10

Interconnection Network Examples (cont)

– Diameter of a line is n-1 and of a ring is n/2 .
– Routing algorithm: Go shorter of left or right.

• The Mesh Interconnection Network

– Each node in a 2D mesh is connected to all four
of its nearest neighbors.

– The diameter of a √n ×√n mesh is 2(√n - 1)
– Has a minimal distance, deadlock-free parallel

routing algorithm: First route message up or
down and then right or left to its destination.

– If the horizonal and vertical ends of a mesh to
the opposite sides, the network is called a torus.

– Meshes have been used more on actual
computers than any other network.

– A 3D mesh is a generalization of a 2D mesh
and has been used in several computers.

– The fact that 2D and 3D meshes model physical
space make them useful for many scientific and
engineering problems.

• Tree Networks

– A binary tree network is normally assumed to
be a complete binary tree.

Parallel Computers

11

Interconnection Network Examples (cont)

– It has a root node, and each interior node has
two links connecting it to nodes in the level
below it.

– The height of the tree is  lg n and its diameter
is 2  lg n .

– In an m-ary tree, each interior node is
connected to m nodes on the level below it.

– The tree is particularly useful for divide-and-
conquer algorithms.

– Unfortunately, the bisection width of a tree is 1
and the communication traffic increases near
the root, which can be a bottleneck.

– In fat tree networks, the number of links is
increased as the links get closer to the root.

– The Thinking Machines CM5 computer used a
4-ary fat tree network.

• Hypercube Network

– A 0-dimensional hypercube consists of one
node.

– Recursively, a d-dimensional hypercube
consists of two (d-1) dimensional hypercubes,
with the corresponding nodes of the two (d-1)
hypercubes linked.

Parallel Computers

12

Hypercube Networks

– Each node in a d-dimensional hypercube has d
links.

– Each node in a hypercube has a d-bit binary
address.

– Two nodes are connected if and only if their
binary address differs by one bit.

– A hypercube has n = 2d PEs

– Advantages of the hypercube include

• its low diameter of lg(n) or d

• its large bisection width of n/2

• its regular structure.

– An important practical disadvantage of the
hypercube is that the number of links per node
increases as the number of processors increase.

• Large hypercubes are difficult to implement.

• Usually overcome by increasing nodes by
replacing each node with a ring of nodes.

– Has a “minimal distance, deadlock-free parallel
routing” algorithm called e-cube routing:

• At each step, the current address and the
destination address are compared.

• Routed message to the node whose address
is obtained by flipping the leftmost digit of
current address where two addresses differ.

Parallel Computers

13

Embedding

• An embedding is a function/mapping that specifies
how the nodes of domain network can be mapped
into a range network.

– Each node in range network is the target of at
most one node in the domain network, unless
specified otherwise.

– The domain network should be as large as
possible with respect to the range network.

– Textbook calls an embedding perfect if each
link in the domain network corresponds under
the mapping to a link in the range network.

• Then “nearest neighbors” are preserved by
the mapping.

– A perfect embedding of a ring onto a torus is
shown in Fig. 1.15.

– A perfect embedding of a mesh/torus in a
hypercube is given in Figure 1.16.

• Uses Gray code along each mesh dimension.

• The dilation of an embedding is the maximum
number of links in the range network corresponding
to one link in the domain network (i.e., its ‘stretch’)

– Perfect embeddings have a dilation of 1.

• Embedding of binary trees in other networks are
used in Ch. 3 -4 for broadcasts and reductions.

Parallel Computers

14

• Some results on binary trees embeddings follow.

– Theorem: A complete binary tree of height
greater than 4 can not be embedded in a 2-D
mesh with a dilation of 1. (Quinn, 1994, pg135)

– Exercise: A dilation-2 embedding of a binary
tree of height 4 is shown in Fig. 1.17. Find a
dilation-1 embedding of this binary tree.

– Theorem: There exists an embedding of a
complete binary tree of height n into a 2D mesh
with dilation n/2 .

– Theorem: A complete binary tree of height n
has a dilation -2 embedding in a hypercube of
dimension n+1 for all n > 1.

• Note: Network embeddings allow algorithms for
the domain network to be transferred to the target
nodes of the range network.

• Warning: The textbook authors often do not use
the words “onto” and “into” correctly, if an
embedding is regarded as technically being a
mapping (i.e., function).

Parallel Computers

15

Communication Methods

• Two basic ways of transferring messages from
source to destination.

– Circuit switching

• Establishing a path and allowing the entire
message to transfer uninterrupted.

• Similar to telephone connection that is held
until the end of the call.

• Links are not available to other messages
until the transfer is complete.

• Latency (~ message transfer time): If the
length of control packet sent to establish
path is small wrt (with respect to) the
message length, the latency is essentially
– the constant L/B, where L is message length
and B is bandwidth.

– packet switching

• Message is divided into “packets” of
information

• Each packet includes source and destination
addresses.

• Packets can not exceed a fixed, maximum
size (e.g., 1000 byte).

• A packet is stored in a node in a buffer until
it can move to the next node.

Parallel Computers

16

Communications (cont)

• At each node, the designation information is
looked at and used to select which node to
forward the packet to.

• Significant latency is created by storing each
packet in each node it reaches.

• Latency: increases linearly with the length
of the route.

• Store-and-forward packet switching is the name
used to describe preceding packet switching.

• Virtual cut-through package switching can be used
to reduce the latency.

– Allows packet to pass through a node without
being stored, if the outgoing link is available.

– If complete path is available, a message can
immediately move from source to destination..

• Wormhole Routing alternate to store-and-forward
packet routing

– A message is divided into small units called flits
(flow control units).

– flits are 1-2 bytes in size.

– can be transferred in parallel on links with
multiple wires.

– Only head of flit is initially transferred when
the next link becomes available.

Parallel Computers

17

Communications (cont)
– As each flit moves forward, the next flit can

move forward.

– The entire path must be reserved for a message
as these packets pull each other along (like cars
of a train).

– Request/acknowledge bit messages are required
to coordinate these pull-along moves. (See text)

– The complete path must be reserved, as these
flits are linked together.

– Latency: If the head of the flit is very small
compared to the length of the message, then the
latency is essentially the constant L/B, with L
the message length and B the link bandwidth.

• Deadlock

– Routing algorithms needed to find a path
between the nodes.

– Adaptive routing algorithms choose different
paths, depending on traffic conditions.

– Livelock is a deadlock-type situation where a
packet continues to go around the network,
without ever reaching its destination.

– Deadlock: No packet can be forwarded because
they are blocked by other stored packets
waiting to be forwarded.

• Input/Output: A significant problem on all parallel
computers.

Parallel Computers

18

Metrics for Evaluating Parallelism

• Granularity One Approach):

– MIMD computation requires that the task be
divided into tasks or processes that can be
executed simultaneously.

– In course grained granularity, each process
requires a large number of sequential
instructions.

– In fine grained granularity, only one or a few
sequential instructions are required.

• Granularity (Another Approach)

– Defn: Size of the computation between
communication or synchronization points.

– Increasing granularity, using this defn

• reduces expensive communications

• reduces costs of process creation

• but reduces the nr of concurrent processes

• Speedup

– A measure of the increase in running time due
to parallelism.

– Based on running times, S(n) = ts/tp , where

• ts is the execution time on a single
processor, using the fastest known
sequential algorithm and

Parallel Computers

19

Parallel Metrics (cont)

• tp is the execution time using a parallel
processor.

– In theoretical analysis, S(n) = ts/tp where

• ts is the worst case running time for of the
fastest known sequential algorithm for the
problem

• tp is the worst case running time of the
parallel algorithm using n PEs.

– With traditional problems, the maximum
speedup of a parallel computer with n PEs is n
and is called linear speedup. An argument is:

• Assume computation is divided perfectly
into n processes of equal duration.

• Assume no overhead is incurred

• Then then optimal parallel running time of n
is obtained

• This yields an absolute maximal running
time of ts /n.

• Then S(n) = ts /(ts /n) = n.

– Normally, the speedup is much less than n, as

• above assumptions usually do not occur.

• Usually some parts of programs are
sequential and only one PE is active

Parallel Computers

20

Parallel Metrics (cont)

• During parts of the execution, some PEs are
waiting for data to be received or to send
messages.

• Superlinear speedup occurs if S(n) > n.

– Textbook states that while this can happen, it is
rare and due to reasons such as

• extra memory in parallel system.

• a sub-optimal sequential algorithm used.

• luck, in case of algorithm that has a random
aspect in its design (e.g., random selection)

– Selim Akl has shown that for some less
standard problems, superlinearity can be
expected.

• Some problems can not be solved without
use of parallel computation.

• Some problems are natural to solve using
parallelism and sequential solutions are
inefficient.

• A whole chapter of his textbook and several
journal papers has been written to establish
these claims are valid, but it may still be a
long time before they are fully accepted.

• Superlinearity has been too hotly debated a
topic for some time to be accepted quickly.

Parallel Computers

21

Amdahl’s Law

• Assumes that the speedup is not superliner; i.e.,
S(n) = ts/ tp ≤ n

• By Figure 1.29 (or slide #40), if f denotes the
fraction of the computation that must be sequential,

tp ≤ f ts + (1-f) ts

• Substituting above values into the above equation
for S(n) and simplifying (see slide #41 or book)
yields

• Above inequality is known as Amdahl’s law.

• See Slide #41 or Fig. 1.30 for related details.

• Note that S(n) never exceed 1/f and approaches 1/f
as n increases.

• Example: If only 5% of the computation is serial,
the maximum speedup is 20, no matter how many
processors are used.

• Observations: Amdahl’s law limitations to
parallelism:

– For a long time, Amdahl’s law was viewed as a
severe limit to the usefulness of parallelism.

ffn
n

nS
1

)1(1
)(≤

−+
≤

Parallel Computers

22

– Note that the argument focuses on the steps in a
particular algorithm

– Assumes an algorithm with ‘more parallelism’
does not exist.

– Gustafon’s Law: The proportion of the
computations that are sequential normally
decreases as the problem size increases.

– Also, Amdahl’s law does not apply to non-
standard problems were superlinearity occurs.

– For details on superlinearity, see Parallel
Computation: Models and Methods, Selim Akl,
pgs 14-20 (Speedup Folklore Theorem) and
Chapter 12.

More Metrics for Parallelism
• Efficiency is defined by

– Efficiency give the percentage of time that the
processors are effectively being used on the
computation.

• Cost: The cost of a parallel algorithm or parallel
execution is defined by

Cost = (running time)× (Nr. of PEs)
= tp × n

n
nS

nt
tE
p

s)(=
↔

=

Parallel Computers

23

More Metrics (cont.)

– The cost of a parallel computation corresponds
to the running time of a sequential computation.

– In particular, observe that

– If a sequential algorithm is executed in parallel
and each PE does 1/n of the work in 1/n of the
sequential running time, then the parallel cost is
the same as the sequential running time.

• Cost-Optimal Parallel Algorithm: A parallel
algorithm for a problem is said to be cost-optimal if
its cost is proportional to the running time of an
optimal sequential algorithm for the same problem.

– By proportional, we means that
cost = tp × n = k × ts

 where k is a constant. (See pg 67 of text).

– Equivalently, a parallel algorithm is optimal if

parallel cost = O(f(t)),

 where f(t) is the running time of an optimal
sequential algorithm.

– In cases where no optimal sequential algorithm
is known, then the “fastest known” sequential
algorithm is often used instead.

• Also, see pg 67 of text.

cost
tE s=

Parallel Computers

24

• The cost of a parallel computation corresponds to
the running time of a sequential computation.

• In particular,

• If a sequential algorithm is executed in parallel and
each PE does 1/n of the work in 1/n of the
sequential running time, then the parallel cost is the
same as the sequential running time.

Parallel Computers

25

Cost-Optimal Parallel Algorithm: A
parallel algorithm for a problem is said to
be cost-optimal if its cost is proportional to
the running time of an optimal sequential

algorithm for the same problem.

• By proportional, we means that

• cost = tp _ n = k _ ts

• where k is a constant. (See pg 67 of text).

• Equivalently, a parallel algorithm is optimal if

• parallel cost = O(f(t)),

• where f(t) is the running time of an optimal
sequential algorithm.

• In cases where no optimal sequential algorithm is
known, then the “fastest known” sequential
algorithm is often used instead.

– Also, see pg 67 of text.

