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Figure 3.1Disconnected computational 
graph (embarrassingly parallel problem).

Embarrassingly Parallel 
Computations

A computation that can be divided into a number of completely independent parts, each of
which can be executed by a separate processor.
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Figure 3.2Practical embarrassingly parallel computational graph with dynamic process 
creation and the master-slave approach.
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Embarrassingly Parallel Examples

Geometrical Transformations of Images

Two-dimensional image stored as a pixmap, in which each pixel (picture element) is repre-
sented a binary number in a two-dimensional array. Grayscale images require typically 8
bits to represent 256 different monochrome intensities. Color requires more specification. 

Examples of low level embarrassingly parallel image operations:

(a)Shifting

The coordinates of a two-dimensional object shifted by ∆x in the x-dimension and ∆y
in the y-dimension are given by

x′ = x + ∆x

y′ = y + ∆y

where x and y are the original and x′ and y′ are the new coordinates.

(b)Scaling

The coordinates of an object scaled by a factor Sx in the x-direction and Sy in the y-
direction are given by

x′ = xSx

y′ = ySy

The object is enlarged in size when Sx and Sy are greater than 1 and reduced in size
when Sx and Sy are between 0 and 1. Note that the magnification or reduction do not
need to be the same in both x- and y-directions.

(c)Rotation

The coordinates of an object rotated through an angle θ about the origin of the coor-
dinate system are given by

x′ = xcosθ + ysinθ
y′ = −xsinθ + ycosθ
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Figure 3.3Partitioning into regions for individual processes.

Process

Map

Process

Map

x

y

Main parallel programming concern is division of bitmap/pixmap into groups of pixels for
each processor because there are usually many more pixels than processes/processors.

Two general methods of grouping: by square/rectangular regions and by columns/rows.

With a 640 × 480 image and 48 processes:
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Pseudocode to Perform Image Shift

Master

for (i = 0, row = 0; i < 48; i++, row = row + 10)/* for each process*/

send(row, Pi); /* send row no.*/

for (i = 0; i < 480; i++) /* initialize temp */

for (j = 0; j < 640; j++) 

temp_map[i][j] = 0;

for (i = 0; i < (640 * 480); i++) {/* for each pixel */

recv(oldrow,oldcol,newrow,newcol, PANY);/* accept new coords */

if !((newrow < 0)||(newrow >= 480)||(newcol < 0)||(newcol >= 640)) 

temp_map[newrow][newcol]=map[oldrow][oldcol];

}

for (i = 0; i < 480; i++) /* update bitmap */

for (j = 0; j < 640; j++) 

map[i][j] = temp_map[i][j];

Slave

recv(row, Pmaster); /* receive row no. */

for (oldrow = row; oldrow < (row + 10); oldrow++)

for (oldcol = 0; oldcol < 640; oldcol++) {/* transform coords */

newrow = oldrow + delta_x;/* shift in x direction */

newcol = oldcol + delta_y;/* shift in y direction */

send(oldrow,oldcol,newrow,newcol, Pmaster);/* coords to master */

}
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Analysis

Suppose each pixel requires one computational step and there are n × n pixels.

Sequential

ts = n2

and a sequential time complexity of Ο(n2).

Parallel

Communication

tcomm = tstartup + mtdata

tcomm = p(tstartup + 2tdata) + 4n2(tstartup + tdata) = Ο(p + n2)

Computation

 = Ο(n2/p)

Overall Execution Time

tp = tcomp + tcomm

For constant p, this is Ο(n2).

However, the constant hidden in the communication part far exceeds those constants in the
computation in most practical situations.

tcomp2
n

2

p
-----





=
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Mandelbrot Set

Set of points in a complex plane that are quasi-stable (will increase and decrease, but not
exceed some limit) when computed by iterating the function

zk+1 = zk
2 + c

where zk+1 is the (k + 1)th iteration of the complex number z = a + bi and c is a complex
number giving the position of the point in the complex plane. The initial value for z is zero.

The iterations are continued until magnitude of z is greater than 2 or the number of itera-
tions reaches some arbitrary limit.

Magnitude of z is the length of the vector given by

zlength = 

Computing the complex function, zk+1 = zk
2 + c, is simplified by recognizing that

z2 = a2 + 2abi + bi2 = a2 − b2 + 2abi

or a real part that is a2 − b2 and an imaginary part that is 2ab.

The next iteration values can be produced by computing:

zreal = zreal
2 - zimag

2 + creal

zimag = 2zrealzimag + cimag

a
2

b
2

+
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Sequential Code

Structure for real and imaginary parts of z:

structure complex {

float real;

float imag;

};

Routine for computing value of one point and returning number of 
iterations

int cal_pixel(complex c)

{

int count, max;

complex z;

float temp, lengthsq;

max = 256;

z.real = 0;

z.imag = 0;

count = 0;/* number of iterations */

do {

temp = z.real * z.real - z.imag * z.imag + c.real;

z.imag = 2 * z.real * z.imag + c.imag;

z.real = temp;

lengthsq = z.real * z.real + z.imag * z.imag;

count++;

} while ((lengthsq < 4.0) && (count < max));

return count;

}
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Scaling Coordinate System 

Suppose the display height is disp_height, the display width is disp_width, and the point
in this display area is (x, y).

For computational efficiency, let

scale_real = (real_max - real_min)/disp_width;

scale_imag = (imag_max - imag_min)/disp_height;

Including scaling, the code could be of the form

for (x = 0; x < disp_width; x++) /* screen coordinates x and y */

for (y = 0; y < disp_height; y++) {

c.real = real_min + ((float) x * scale_real);

c.imag = imag_min + ((float) y * scale_imag);

color = cal_pixel(c);

display(x, y, color);

}

where display() is a routine suitably written to display the pixel (x, y) at the computed col-

or. 
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Parallelizing Mandelbrot Set Computation

Static Task Assignment

Master

for (i = 0, row = 0; i < 48; i++, row = row + 10)/* for each process*/

send(&row, Pi); /* send row no.*/

for (i = 0; i < (480 * 640); i++) {/* from processes, any order */

recv(&c, &color, PANY);/* receive coordinates/colors */

display(c, color);/* display pixel on screen */

}

Slave (process i)

recv(&row, Pmaster); /* receive row no. */

for (x = 0; x < disp_width; x++)/* screen coordinates x and y */

for (y = row; y < (row + 10); y++) {

c.real = min_real + ((float) x * scale_real);

c.imag = min_imag + ((float) y * scale_imag);

color = cal_pixel(c);

send(&c, &color, Pmaster);/* send coords, color to master */

}
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Figure 3.5Work pool approach.
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Coding for Work Pool Approach

Master

count = 0;/* counter for termination*/

row = 0;/* row being sent */

for (k = 0; k < procno; k++) {/* assuming procno<disp_height */

send(&row, Pk, data_tag);/* send initial row to process */

count++;/* count rows sent */

row++;/* next row */

}

do {

recv (&slave, &r, color, PANY, result_tag);

count--;/* reduce count as rows received */

if (row < disp_height) {

send (&row, Pslave, data_tag);/* send next row */

row++;/* next row */

count++;

} else 

send (&row, Pslave, terminator_tag);/* terminate */

rows_recv++;

display (r, color);/* display row */

} while (count > 0);

Slave

recv(y, Pmaster, ANYTAG, source_tag);/* receive 1st row to compute */

while (source_tag == data_tag) {

c.imag = imag_min + ((float) y * scale_imag);

for (x = 0; x < disp_width; x++) {/* compute row colors */

c.real = real_min + ((float) x * scale_real);

color[x] = cal_pixel(c);

}

send(&i, &y, color, Pmaster, result_tag);/* row colors to master */

recv(y, Pmaster, source_tag);/* receive next row */

};
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Analysis

Sequential

Complicated by not knowing how many iterations are needed for each pixel. The number
of iterations for each pixel is some function of n but cannot exceed max.

ts ≤ max × n

or a sequential time complexity of Ο(n).

Parallel program

Phase 1: Communication

Row number is sent to each slave

tcomm1 = s(tstartup + tdata)

Phase 2: Computation

Slaves perform their Mandelbrot computation in parallel; i.e.,

Phase 3: Communication

Results are passed back to the master using individual sends:

Overall

tcomp
maxn ×

s
------------------- ≤

tcomm2
n
s
---tstartuptdata + () =

tp
maxn ×

s
-------------------n

s
---s + 

tstartuptdata + () + ≤
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Figure 3.7Computing π by a Monte Carlo 
method.

Area = π

Total area = 4

2

2

Monte Carlo Methods

Basis of Monte Carlo methods is the use of random selections in calculations

Example - To calculate π

A circle is formed within a square. The circle has unit radius so that the square has sides 2
× 2.

The ratio of the area of the circle to the square is given by

Points within the square are chosen randomly and a score is kept of how many points
happen to lie within the circle.

The fraction of points within the circle will be π/4, given a sufficient number of randomly
selected samples. 

Area of circle
Area of square
-----------------------------------π1()2

22 ×
--------------π

4
--- ==
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Figure 3.8Function being integrated in 
computing π by a Monte Carlo method. 1

1

Computing an Integral

One quadrant of the construction in Figure 3.7 can be described by the integral

A random pair of numbers, (xr,yr) would be generated, each between 0 and 1, and then

counted as in circle if ; that is, .

1x2 –xd
0

1

∫
π
4
--- =

yr1xr
2 – ≤yr

2xr
21 ≤ +
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Alternative (better) Method 

An alternative probabilistic method to find an integral is to use the random values of x to
compute f(x) and sum the values of f(x):

where xr are randomly generated values of x between x1 and x2. 

Example

Computing the integral

Sequential Code.The sequential code might be of the form

sum = 0;

for (i = 0; i < N; i++) {/* N random samples */

xr = rand_v(x1, x2);/* generate next random value */

sum = sum + xr * xr - 3 * xr;/* compute f(xr) */

}

area = (sum / N) * (x2 - x1);

The routine randv(x1, x2) returns a pseudorandom number between x1 and x2.

Areafx()xd
x1

x2

∫
1
N
----

N∞ →
limfxr ()x2x1 – ()

i1 =

N

∑ ==

Ix
2

3x – ()xd
x1

x2

∫ =
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Figure 3.9Parallel Monte Carlo 
integration.

Parallel Implementation
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Pseudocode
Master

for(i = 0; i < N/n; i++) {

for (j = 0; j < n; j++)/* n=no of random numbers for slave */

xr[j] = rand();/* load numbers to be sent */

recv(PANY, req_tag, Psource);/* wait for a slave to make request */

send(xr, &n, Psource, compute_tag);

}

for(i = 0; i < slave_no; i++) {/* terminate computation */

recv(Pi, req_tag);

send(Pi, stop_tag);

}

sum = 0;

reduce_add(&sum, Pgroup);

Slave

sum = 0;

send(Pmaster, req_tag);

recv(xr, &n, Pmaster, source_tag);

while (source_tag == compute_tag) {

for (i = 0; i < n; i++)

sum = sum + xr[i] * xr[i] - 3 * xr[i];

send(Pmaster, req_tag);

recv(xr, &n, Pmaster, source_tag);

};

reduce_add(&sum, Pgroup);
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Figure 3.10Parallel computation of a sequence.

Parallel Random Number Generation

The most popular way of creating a pueudorandom number sequence, x1, x2, x3, …, xi−1,
xi, xi+1, …, xn−1, xn, is by evaluating xi+1 from a carefully chosen function of xi, often of the
form

xi+1 = (axi + c) mod m

where a, c, and m are constants chosen to create a sequence that has similar properties to
truly random sequences.

Parallel Pseudorandom Number Generators. 

It turns out that

xi+1 = (axi + c) mod m

xi+k = (Axi + C) mod m

where A = ak mod m, C = c(ak−1 + an−2 + … + a1 + a0) mod m, and k is a selected “jump”
constant.


