
99
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Processes

Results

Input data

Figure 3.1Disconnected computational
graph (embarrassingly parallel problem).

Embarrassingly Parallel
Computations

A computation that can be divided into a number of completely independent parts, each of
which can be executed by a separate processor.

100
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Figure 3.2Practical embarrassingly parallel computational graph with dynamic process
creation and the master-slave approach.

Send initial data

Collect results

Master
Slaves

spawn()

recv()

send()

recv()
send()

101
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Embarrassingly Parallel Examples

Geometrical Transformations of Images

Two-dimensional image stored as a pixmap, in which each pixel (picture element) is repre-
sented a binary number in a two-dimensional array. Grayscale images require typically 8
bits to represent 256 different monochrome intensities. Color requires more specification.

Examples of low level embarrassingly parallel image operations:

(a)Shifting

The coordinates of a two-dimensional object shifted by ∆x in the x-dimension and ∆y
in the y-dimension are given by

x′ = x + ∆x

y′ = y + ∆y

where x and y are the original and x′ and y′ are the new coordinates.

(b)Scaling

The coordinates of an object scaled by a factor Sx in the x-direction and Sy in the y-
direction are given by

x′ = xSx

y′ = ySy

The object is enlarged in size when Sx and Sy are greater than 1 and reduced in size
when Sx and Sy are between 0 and 1. Note that the magnification or reduction do not
need to be the same in both x- and y-directions.

(c)Rotation

The coordinates of an object rotated through an angle θ about the origin of the coor-
dinate system are given by

x′ = xcosθ + ysinθ
y′ = −xsinθ + ycosθ

102
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

640

480

80

80

640

480

10

(a) Square region for each process

(b) Row region for each process

Figure 3.3Partitioning into regions for individual processes.

Process

Map

Process

Map

x

y

Main parallel programming concern is division of bitmap/pixmap into groups of pixels for
each processor because there are usually many more pixels than processes/processors.

Two general methods of grouping: by square/rectangular regions and by columns/rows.

With a 640 × 480 image and 48 processes:

103
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Pseudocode to Perform Image Shift

Master

for (i = 0, row = 0; i < 48; i++, row = row + 10)/* for each process*/

send(row, Pi); /* send row no.*/

for (i = 0; i < 480; i++) /* initialize temp */

for (j = 0; j < 640; j++)

temp_map[i][j] = 0;

for (i = 0; i < (640 * 480); i++) {/* for each pixel */

recv(oldrow,oldcol,newrow,newcol, PANY);/* accept new coords */

if !((newrow < 0)||(newrow >= 480)||(newcol < 0)||(newcol >= 640))

temp_map[newrow][newcol]=map[oldrow][oldcol];

}

for (i = 0; i < 480; i++) /* update bitmap */

for (j = 0; j < 640; j++)

map[i][j] = temp_map[i][j];

Slave

recv(row, Pmaster); /* receive row no. */

for (oldrow = row; oldrow < (row + 10); oldrow++)

for (oldcol = 0; oldcol < 640; oldcol++) {/* transform coords */

newrow = oldrow + delta_x;/* shift in x direction */

newcol = oldcol + delta_y;/* shift in y direction */

send(oldrow,oldcol,newrow,newcol, Pmaster);/* coords to master */

}

104
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Analysis

Suppose each pixel requires one computational step and there are n × n pixels.

Sequential

ts = n2

and a sequential time complexity of Ο(n2).

Parallel

Communication

tcomm = tstartup + mtdata

tcomm = p(tstartup + 2tdata) + 4n2(tstartup + tdata) = Ο(p + n2)

Computation

 = Ο(n2/p)

Overall Execution Time

tp = tcomp + tcomm

For constant p, this is Ο(n2).

However, the constant hidden in the communication part far exceeds those constants in the
computation in most practical situations.

tcomp2
n

2

p





=

105
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Mandelbrot Set

Set of points in a complex plane that are quasi-stable (will increase and decrease, but not
exceed some limit) when computed by iterating the function

zk+1 = zk
2 + c

where zk+1 is the (k + 1)th iteration of the complex number z = a + bi and c is a complex
number giving the position of the point in the complex plane. The initial value for z is zero.

The iterations are continued until magnitude of z is greater than 2 or the number of itera-
tions reaches some arbitrary limit.

Magnitude of z is the length of the vector given by

zlength =

Computing the complex function, zk+1 = zk
2 + c, is simplified by recognizing that

z2 = a2 + 2abi + bi2 = a2 − b2 + 2abi

or a real part that is a2 − b2 and an imaginary part that is 2ab.

The next iteration values can be produced by computing:

zreal = zreal
2 - zimag

2 + creal

zimag = 2zrealzimag + cimag

a
2

b
2

+

106
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Sequential Code

Structure for real and imaginary parts of z:

structure complex {

float real;

float imag;

};

Routine for computing value of one point and returning number of
iterations

int cal_pixel(complex c)

{

int count, max;

complex z;

float temp, lengthsq;

max = 256;

z.real = 0;

z.imag = 0;

count = 0;/* number of iterations */

do {

temp = z.real * z.real - z.imag * z.imag + c.real;

z.imag = 2 * z.real * z.imag + c.imag;

z.real = temp;

lengthsq = z.real * z.real + z.imag * z.imag;

count++;

} while ((lengthsq < 4.0) && (count < max));

return count;

}

107
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Scaling Coordinate System

Suppose the display height is disp_height, the display width is disp_width, and the point
in this display area is (x, y).

For computational efficiency, let

scale_real = (real_max - real_min)/disp_width;

scale_imag = (imag_max - imag_min)/disp_height;

Including scaling, the code could be of the form

for (x = 0; x < disp_width; x++) /* screen coordinates x and y */

for (y = 0; y < disp_height; y++) {

c.real = real_min + ((float) x * scale_real);

c.imag = imag_min + ((float) y * scale_imag);

color = cal_pixel(c);

display(x, y, color);

}

where display() is a routine suitably written to display the pixel (x, y) at the computed col-

or.

108
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Real

Figure 3.4Mandelbrot set.

+2 −20

+2

−2

0

Imaginary

109
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Parallelizing Mandelbrot Set Computation

Static Task Assignment

Master

for (i = 0, row = 0; i < 48; i++, row = row + 10)/* for each process*/

send(&row, Pi); /* send row no.*/

for (i = 0; i < (480 * 640); i++) {/* from processes, any order */

recv(&c, &color, PANY);/* receive coordinates/colors */

display(c, color);/* display pixel on screen */

}

Slave (process i)

recv(&row, Pmaster); /* receive row no. */

for (x = 0; x < disp_width; x++)/* screen coordinates x and y */

for (y = row; y < (row + 10); y++) {

c.real = min_real + ((float) x * scale_real);

c.imag = min_imag + ((float) y * scale_imag);

color = cal_pixel(c);

send(&c, &color, Pmaster);/* send coords, color to master */

}

110
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Work pool

(xc, yc)
(xa, ya)

(xd, yd) (xb, yb)

(xe, ye)

Figure 3.5Work pool approach.

Task

Return results/
request new task

Dynamic Task Assignment
Work Pool/Processor Farms

111
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Coding for Work Pool Approach

Master

count = 0;/* counter for termination*/

row = 0;/* row being sent */

for (k = 0; k < procno; k++) {/* assuming procno<disp_height */

send(&row, Pk, data_tag);/* send initial row to process */

count++;/* count rows sent */

row++;/* next row */

}

do {

recv (&slave, &r, color, PANY, result_tag);

count--;/* reduce count as rows received */

if (row < disp_height) {

send (&row, Pslave, data_tag);/* send next row */

row++;/* next row */

count++;

} else

send (&row, Pslave, terminator_tag);/* terminate */

rows_recv++;

display (r, color);/* display row */

} while (count > 0);

Slave

recv(y, Pmaster, ANYTAG, source_tag);/* receive 1st row to compute */

while (source_tag == data_tag) {

c.imag = imag_min + ((float) y * scale_imag);

for (x = 0; x < disp_width; x++) {/* compute row colors */

c.real = real_min + ((float) x * scale_real);

color[x] = cal_pixel(c);

}

send(&i, &y, color, Pmaster, result_tag);/* row colors to master */

recv(y, Pmaster, source_tag);/* receive next row */

};

112
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

0disp_height

Row returned

Row sent

Increment

Decrement

Rows outstanding in slaves (count)

Figure 3.6Counter termination.
Terminate

113
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Analysis

Sequential

Complicated by not knowing how many iterations are needed for each pixel. The number
of iterations for each pixel is some function of n but cannot exceed max.

ts ≤ max × n

or a sequential time complexity of Ο(n).

Parallel program

Phase 1: Communication

Row number is sent to each slave

tcomm1 = s(tstartup + tdata)

Phase 2: Computation

Slaves perform their Mandelbrot computation in parallel; i.e.,

Phase 3: Communication

Results are passed back to the master using individual sends:

Overall

tcomp
maxn ×

s
------------------- ≤

tcomm2
n
s
---tstartuptdata + () =

tp
maxn ×

s
-------------------n

s
---s + 

tstartuptdata + () + ≤

114
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Figure 3.7Computing π by a Monte Carlo
method.

Area = π

Total area = 4

2

2

Monte Carlo Methods

Basis of Monte Carlo methods is the use of random selections in calculations

Example - To calculate π

A circle is formed within a square. The circle has unit radius so that the square has sides 2
× 2.

The ratio of the area of the circle to the square is given by

Points within the square are chosen randomly and a score is kept of how many points
happen to lie within the circle.

The fraction of points within the circle will be π/4, given a sufficient number of randomly
selected samples.

Area of circle
Area of square
-----------------------------------π1()2

22 ×
--------------π

4
--- ==

115
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

x

y1x2 – =
1

f(x)

Figure 3.8Function being integrated in
computing π by a Monte Carlo method. 1

1

Computing an Integral

One quadrant of the construction in Figure 3.7 can be described by the integral

A random pair of numbers, (xr,yr) would be generated, each between 0 and 1, and then

counted as in circle if ; that is, .

1x2 –xd
0

1

∫
π
4
--- =

yr1xr
2 – ≤yr

2xr
21 ≤ +

116
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Alternative (better) Method

An alternative probabilistic method to find an integral is to use the random values of x to
compute f(x) and sum the values of f(x):

where xr are randomly generated values of x between x1 and x2.

Example

Computing the integral

Sequential Code.The sequential code might be of the form

sum = 0;

for (i = 0; i < N; i++) {/* N random samples */

xr = rand_v(x1, x2);/* generate next random value */

sum = sum + xr * xr - 3 * xr;/* compute f(xr) */

}

area = (sum / N) * (x2 - x1);

The routine randv(x1, x2) returns a pseudorandom number between x1 and x2.

Areafx()xd
x1

x2

∫
1
N

N∞ →
limfxr ()x2x1 – ()

i1 =

N

∑ ==

Ix
2

3x – ()xd
x1

x2

∫ =

117
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Master

Slaves

Random number
process

Random
number

Partial sum

Request

Figure 3.9Parallel Monte Carlo
integration.

Parallel Implementation

118
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Pseudocode
Master

for(i = 0; i < N/n; i++) {

for (j = 0; j < n; j++)/* n=no of random numbers for slave */

xr[j] = rand();/* load numbers to be sent */

recv(PANY, req_tag, Psource);/* wait for a slave to make request */

send(xr, &n, Psource, compute_tag);

}

for(i = 0; i < slave_no; i++) {/* terminate computation */

recv(Pi, req_tag);

send(Pi, stop_tag);

}

sum = 0;

reduce_add(&sum, Pgroup);

Slave

sum = 0;

send(Pmaster, req_tag);

recv(xr, &n, Pmaster, source_tag);

while (source_tag == compute_tag) {

for (i = 0; i < n; i++)

sum = sum + xr[i] * xr[i] - 3 * xr[i];

send(Pmaster, req_tag);

recv(xr, &n, Pmaster, source_tag);

};

reduce_add(&sum, Pgroup);

119
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

x1x2xk-1xkxk+1xk+2x2k-1x2k

Figure 3.10Parallel computation of a sequence.

Parallel Random Number Generation

The most popular way of creating a pueudorandom number sequence, x1, x2, x3, …, xi−1,
xi, xi+1, …, xn−1, xn, is by evaluating xi+1 from a carefully chosen function of xi, often of the
form

xi+1 = (axi + c) mod m

where a, c, and m are constants chosen to create a sequence that has similar properties to
truly random sequences.

Parallel Pseudorandom Number Generators.

It turns out that

xi+1 = (axi + c) mod m

xi+k = (Axi + C) mod m

where A = ak mod m, C = c(ak−1 + an−2 + … + a1 + a0) mod m, and k is a selected “jump”
constant.

