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Figure 4.1Partitioning a sequence of numbers into parts and adding the parts.

Sum

x0 … x(n/m)−1xn/m … x(2n/m)−1x(m−1)n/m … xn−1 …

Partial sums

++

+

+

Partitioning and Divide-and-
Conquer Strategies

Partitioning Strategies

Partitioning simply divides the problem into parts

Example - Adding a sequence of numbers

We might consider dividing the sequence into m parts of n/m numbers each, (x0 … x(n/m)−
1), (xn/m … x(2n/m)−1), …, (x(m−1)n/m … xn−1), at which point m processors (or processes)
can each add one sequence independently to create partial sums. 
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Using separate send()s and recv()s

Master

s = n/m;/* number of numbers for slaves*/

for (i = 0, x = 0; i < m; i++, x = x + s)

send(&numbers[x], s, Pi);/* send s numbers to slave */

sum = 0;

for (i = 0; i < m; i++) {/* wait for results from slaves */

recv(&part_sum, PANY);

sum = sum + part_sum;/* accumulate partial sums */

}

Slave

recv(numbers, s, Pmaster);/* receive s numbers from master */

part_sum = 0;

for (i = 0; i < s; i++)/* add numbers */

part_sum = part_sum + numbers[i];

send(&part_sum, Pmaster);/* send sum to master */
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Using Broadcast/multicast Routine

Master

s = n/m;/* number of numbers for slaves */

bcast(numbers, s, Pslave_group);/* send all numbers to slaves */

sum = 0;

for (i = 0; i < m; i++){/* wait for results from slaves */

recv(&part_sum, PANY);

sum = sum + part_sum;/* accumulate partial sums */

}

Slave

bcast(numbers, s, Pmaster);/* receive all numbers from master*/

start = slave_number * s;/* slave number obtained earlier */

end = start + s;

part_sum = 0;

for (i = start; i < end; i++)/* add numbers */

part_sum = part_sum + numbers[i];

send(&part_sum, Pmaster);/* send sum to master */
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Using scatter and reduce routines

Master

s = n/m;/* number of numbers */

scatter(numbers,&s,Pgroup,root=master);/* send numbers to slaves */

reduce_add(&sum,&s,Pgroup,root=master);/* results from slaves */

Slave

scatter(numbers,&s,Pgroup,root=master);/* receive s numbers */

./* add numbers */

reduce_add(&part_sum,&s,Pgroup,root=master);/* send sum to master */
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Analysis
Sequential

Requires n − 1 additions with a time complexity of Ο(n).

Parallel
Using individual send and receive routines

Phase 1 — Communication
tcomm1 = m(tstartup + (n/m)tdata)

Phase 2 — Computation
tcomp1 = n/m − 1

Phase 3 — Communication
Returning partial results using individual send and receive routines

tcomm2 = m(tstartup + tdata)

Phase 4 — Computation
Final accumulation

tcomp2 = m − 1

Overall
tp = (tcomm1 + tcomm2) + (tcomp1 + tcomp2)

= 2mtstartup + (n + m)tdata + m + n/m − 2

or

tp = O(n + m)

We see that the parallel time complexity is worse than the sequential time complexity.
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Divide and Conquer

Characterized by dividing a problem into subproblems that are of the same form as the
larger problem. Further divisions into still smaller sub-problems are usually done by
recursion

A sequential recursive definition for adding a list of numbers is

int add(int *s)/* add list of numbers, s */

{

if (number(s) =< 2) return (n1 + n2);/* see explanation */

else {

Divide (s, s1, s2);/* divide s into two parts, s1 and s2 */

part_sum1 = add(s1);/*recursive calls to add sub lists */

part_sum2 = add(s2);

return (part_sum1 + part_sum2);

}

}
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Figure 4.2Tree construction.

Initial problem

Divide

Final tasks
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Figure 4.3Dividing a list into parts.

P0P1P2P3P4P5P6P7

P0

P0

P0P2P4P6
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Original list

x0xn−1

Parallel Implementation
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Figure 4.4Partial summation.

P0P1P2P3P4P5P6P7

P0

P0

P0P2P4P6

P4

Final sum

x0xn−1
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Parallel Code

Suppose we statically create eight processors (or processes) to add a list of numbers.

Process P0
/* division phase */

divide(s1, s1, s2);/* divide s1 into two, s1 and s2 */

send(s2, P4);/* send one part to another process */

divide(s1, s1, s2);

send(s2, P2);

divide(s1, s1, s2);

send(s2, P1};

part_sum = *s1;/* combining phase */

recv(&part_sum1, P1);

part_sum = part_sum + part_sum1;

recv(&part_sum1, P2);

part_sum = part_sum + part_sum1;

recv(&part_sum1, P4);

part_sum = part_sum + part_sum1;

The code for process P4 might take the form

Process P4

recv(s1, P0);/* division phase */

divide(s1, s1, s2);

send(s2, P6);

divide(s1, s1, s2);

send(s2, P5);

part_sum = *s1;/* combining phase */

recv(&part_sum1, P5);

part_sum = part_sum + part_sum1;

recv(&part_sum1, P6);

part_sum = part_sum + part_sum1;

send(&part_sum, P0);

Similar sequences are required for the other processes.
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Analysis

Assume that n is a power of 2. The communication setup time, tstartup, is not included in the
following for simplicity. 

Communication 
Division phase

Combining phase

Total communication time

Computation

Total Parallel Execution Time 

tcomm1
n
2
---tdata

n
4
---tdata

n
8
---tdata…

n
p
---tdata ++++

np1 – ()
p

--------------------tdata ==

tcomm2tdatap log =

tcommtcomm1tcomm2 +
np1 – ()

p
--------------------tdatatdatap log + ==

tcomp
n
p
---p log + =

tp
np1 – ()

p
--------------------tdatatdatap log

n
p
---p log +++ =
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OR

OR OR

Found/
Not found

Figure 4.5Part of a search tree.
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Figure 4.6Quadtree.

M-ary Divide and Conquer

Divide and conquer can also be applied where a task is divided into more than two parts at
each stage.

For example, if the task is broken into four parts, the sequential recursive definition would
be

int add(int *s)/* add list of numbers, s */

{

if (number(s) =< 4) return(n1 + n2 + n3 + n4);

else {

Divide (s,s1,s2,s3,s4);/* divide s into s1,s2,s3,s4*/

part_sum1 = add(s1);/*recursive calls to add sublists */

part_sum2 = add(s2);

part_sum3 = add(s3);

part_sum4 = add(s4);

return (part_sum1 + part_sum2 + part_sum3 + part_sum4);

}

}
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Image area

First division

Second division

into four parts

Figure 4.7Dividing an image.
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Unsorted numbers

Sorted numbers

Buckets

Figure 4.8Bucket sort.

Sort
contents
of buckets

Merge lists

Divide-and-Conquer Examples

Sorting Using Bucket Sort

Works well if the original numbers are uniformly distributed across a known interval, say
0 to a − 1.

This interval is divided into m equal regions, 0 to a/m − 1, a/m to 2a/m − 1, 2a/m to 3a/m −
1, … and one “bucket” is assigned to hold numbers that fall within each region.

The numbers are simply placed into the appropriate buckets.

The numbers in each bucket will be sorted using a sequential sorting algorithm

Sequential time
ts = n + m((n/m)log(n/m)) = n + nlog(n/m) = Ο(nlog(n/m))
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Unsorted numbers

Sort

Figure 4.9One parallel version of bucket sort.

Buckets

contents
of buckets

Merge lists

p processors

Sorted numbers

Parallel Algorithm

Bucket sort can be parallelized by assigning one processor for each bucket, which reduces
the second term in the preceding equation to (n/p)log(n/p) for p processors (where p = m). 
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Unsorted numbers

Sort

Large

Figure 4.10Parallel version of bucket sort.

Small
buckets

Empty
small
buckets

buckets

contents
of buckets

Merge lists

p processors

n/m numbers

Sorted numbers

Further Parallelization

By partitioning the sequence into m regions, one region for each processor.

Each processor maintains p “small” buckets and separates the numbers in its region into its
own small buckets.

These small buckets are then “emptied” into the p final buckets for sorting, which requires
each processor to send one small bucket to each of the other processors (bucket i to proces-
sor i).
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Analysis
The following phases are needed:

1.Partition numbers.

2.Sort into small buckets.

3.Send to large buckets.

4.Sort large buckets.

Phase 1 — Computation and Communication
tcomp1 = n

tcomm1 = tstartup + tdatan

Phase 2 — Computation
tcomp2 = n/p

Phase 3 — Communication.
If all the communications could overlap:

tcomm3 = (p − 1)(tstartup + (n/p2)tdata)

Phase 4 — Computation
tcomp4 = (n/p)log(n/p)

Overall

tp = tstartup + tdatan + n/p + (p − 1)(tstartup + (n/p2)tdata) +(n/p)log(n/p)

It is assumed that the numbers are uniformly distributed to obtain these formulas. The
worst-case scenario would occur when all the numbers fell into one bucket!
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SendReceive

Send

Process 1Process n − 1

Process 0Process n − 1

Process 0Process n − 2

0n − 10n − 10n − 10n − 1

Figure 4.11“All-to-all” broadcast.

bufferbuffer

buffer

“all-to-all” routine 

For Phase 3 - sends data from each process to every other process
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A0,0A0,1A0,2A0,3

A1,0A1,1A1,2A1,3

A3,0A3,1A3,2A3,3

A2,0A2,1A2,2A2,3

A0,0A1,0A2,0A3,0

A0,1A1,1A2,1A3,1

A0,3A1,3A2,3A3,3

A0,2A1,2A2,2A3,2

P0

P1

P2

P3

“All-to-all”

Figure 4.12Effect of “all-to-all” on an 
array.

The “all-to-all” routine will actually transfer the rows of an array to columns:
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Figure 4.13Numerical integration using 
rectangles.

f(q) f(p)

δ

f(x)

x pq ab

Numerical Integration

A general divide-and-conquer technique divides the region continually into parts and lets
some optimization function decide when certain regions are sufficiently divided.

Example: numerical integration:

Can divide the area into separate parts, each of which can be calculated by a separate pro-
cess. Each region could be calculated using an approximation given by rectangles: 

Ifx()xd
a

b

∫ =
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f(q) f(p)

δ
Figure 4.14More accurate numerical 
integration using rectangles.

f(x)

x pq ab

A Better Approximation

Aligning the rectangles:
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Figure 4.15Numerical integration using 
the trapezoidal method.

f(q) f(p)

δ

f(x)

x pq ab
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Static Assignment
SPMD pseudocode:

Process Pi

if (i == master) {/* read number of intervals required */

printf(“Enter number of intervals ”);

scanf(%d”,&n);

}

bcast(&n, Pgroup);/* broadcast interval to all processes */

region = (b - a)/p;/* length of region for each process */

start = a + region * i;/* starting x coordinate for process */

end = start + region;/* ending x coordinate for process */

d = (b - a)/n;/* size of interval */

area = 0.0;

for (x = start; x < end; x = x + d)

area = area + f(x) + f(x+d);

area = 0.5 * area * d;

reduce_add(&integral, &area, Pgroup);/* form sum of areas */

A reduce operation is used to add the areas computed by the individual processes.

Can simplify the calculation somewhat by algebraic manipulation (see text).
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Figure 4.16Adaptive quadrature 
construction.

AB

C
f(x)

x

Adaptive Quadrature

Method whereby the solution adapts to the shape of the curve

Example- use three areas, A, B, and C. The computation is terminated when the area
computed for the largest of the A and B regions is sufficiently close to the sum of the areas
computed for the other two regions.
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Figure 4.17Adaptive quadrature with false 
termination.

f(x)

x

AB

C = 0

Some care might be needed in choosing when to terminate.

Might cause us to terminate early, as two large regions are the same (i.e., C = 0).
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Gravitational N-Body Problem

The objective is to find the positions and movements of the bodies in space (say planets)
that are subject to gravitational forces from other bodies using Newtonian laws of physics.

The gravitational force between two bodies of masses ma and mb is given by

where G is the gravitational constant and r is the distance between the bodies. 

Subject to forces, a body will accelerate according to Newton’s second law:

F = ma

where m is the mass of the body, F is the force it experiences, and a is the resultant accel-
eration. 

Let the time interval be ∆t. Then, for a particular body of mass m, the force is given by

and a new velocity

where v
t+1

 is the velocity of the body at time t + 1 and v
t
 is the velocity of the body at time t.

If a body is moving at a velocity v over the time interval ∆t, its position changes by

where x
t
 is its position at time t.

Once bodies move to new positions, the forces change and the computation has to be
repeated.
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Three-Dimensional Space

Since the bodies are in a three-dimensional space, all values are vectors and have to be
resolved into three directions, x, y, and z.

In a three-dimensional space having a coordinate system (x, y, z), the distance between the
bodies at (xa, ya, za) and (xb, yb, zb) is given by

The forces are resolved in the three directions, using, for example,

where the particles are of mass ma and mb and have the coordinates (xa, ya, za) and

(xb, yb, zb).
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Sequential Code

The overall gravitational N-body computation can be described by the algorithm

for (t = 0; t < tmax; t++)/* for each time period */

for (i = 0; i < N; i++) {/* for each body */

F = Force_routine(i);/* compute force on ith body */

v[i]new = v[i] + F * dt / m;/* compute new velocity and

x[i]new = x[i] + v[i]new * dt;/* new position (leap-frog) */

}

for (i = 0; i < nmax; i++) {/* for each body */

x[i] = x[i]new;/* update velocity and position*/

v[i] = v[i]new;

}
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Distant cluster of bodies
r

Center of mass

Figure 4.18Clustering distant bodies.

Parallel Code

The algorithm is an O(N2) algorithm (for one iteration) as each of the N bodies is influenced
by each of the other N − 1 bodies. It is not feasible to use this direct algorithm for most inter-
esting N-body problems where N is very large.

The time complexity can be reduced using the observation that a cluster of distant bodies
can be approximated as a single distant body of the total mass of the cluster sited at the cen-
ter of mass of the cluster:
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Barnes-Hut Algorithm

Starts with the whole space in which one cube contains the bodies (or particles).

First, this cube is divided into eight subcubes.

If a subcube contains no particles, the subcube is deleted from further consideration.

If a subcube contains more than one body, it is recursively divided until every subcube
contains one body.

This process creates an octtree; that is, a tree with up to eight edges from each node. The
leaves represent cells each containing one body.

After the tree has been constructed, the total mass and center of mass of the subcube is
stored at each node.

The force on each body can then be obtained by traversing the tree starting at the root,
stopping at a node when the clustering approximation can be used, e.g. when:

where θ is a constant typically 1.0 or less (θ is called the opening angle). 

Constructing the tree requires a time of Ο(nlogn), and so does computing all the forces, so
that the overall time complexity of the method is O(nlogn).

r
d
θ
--- ≥
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Subdivision
direction

Figure 4.19Recursive division of two-dimensional space.

Partial quadtree Particles
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Figure 4.20Orthogonal recursive bisection 
method.

Orthogonal Recursive Bisection

Example for a two-dimensional square area.

First, a vertical line is found that divides the area into two areas each with an equal number
of bodies. For each area, a horizontal line is found that divides it into two areas each with
an equal number of bodies. This is repeated until there are as many areas as processors, and
then one processor is assigned to each area.


