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P0P1P2P3P4P5

Figure 5.1Pipelined processes.

Pipelined Computations

In the pipeline technique, the problem is divided into a series of tasks that have to be
completed one after the other.

In fact, this is the basis of sequential programming.

Each task will be executed by a separate process or processor.

This parallelism can be viewed as a form of functional decomposition.

The problem is divided into separate functions that must be performed, but in this case, the
functions are performed in succession.

As we shall see, the input data is often broken up and processed separately.
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sum

a[0]a[1]a[2]a[3]a[4]

sout sin

Figure 5.2Pipeline for an unfolded loop.

sout sinsout sinsout sinsout sin

aa a a a

Example

Add all the elements of array a to an accumulating sum:

for (i = 0; i < n; i++)

sum = sum + a[i];

The loop could be “unfolded” to yield

sum = sum + a[0];

sum = sum + a[1];

sum = sum + a[2];

sum = sum + a[3];

sum = sum + a[4];

.

One pipeline solution:

Stage i performs

sout = sin + a[i];
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f(t)fout fin

Figure 5.3Pipeline for a frequency filter.

fout finfout finfout finfout fin

f0f4 f3 f2 f1
Filtered signal

Signal without
frequency f0

Signal without
frequency f1

Signal without
frequency f2

Signal without
frequency f3

Example

A frequency filter  - The objective here is to remove specific frequencies (say the frequen-
cies f0, f1, f2, f3, etc.) from a (digitized) signal, f(t). The signal could enter the pipeline from
the left:
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Given that the problem can be divided into a series of sequential tasks, the pipelined
approach can provide increased speed under the following three types of computations:

1.If more than one instance of the complete problem is to be executed
2.If a series of data items must be processed, each requiring multiple operations
3.If information to start the next process can be passed forward before the process

has completed all its internal operations
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Figure 5.4Space-time diagram of a pipeline.

p − 1m

“Type 1” Pipeline Space-Time Diagram 
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P0P1P2P3P4P5

P0P1P2P3P4P5

P0P1P2P3P4P5

P0P1P2P3P4P5
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Instance 2

Instance 3

Instance 0

Instance 4

Figure 5.5Alternative space-time diagram.
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Time

Figure 5.6Pipeline processing 10 data elements.

d9d8d7d6d5d4d3d2d1d0P0P1P2P3P4P5

(a) Pipeline structure

(b) Timing diagram
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“Type 2” Pipeline Space-Time Diagram 
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Figure 5.7Pipeline processing where information passes to next stage before end of process.
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“Type 3” Pipeline Space-Time Diagram 
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P0P1P2P3P4P5P7 P6P8P9P11 P10

Processor 1 Processor 0Processor 2

Figure 5.8Partitioning processes onto processors.

If the number of stages is larger than the number of processors in any pipeline, a group of

stages can be assigned to each processor:
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Host

Multiprocessor

computer

Figure 5.9Multiprocessor system with a line configuration.

Computing Platform for Pipelined 
Applications



100
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

P0P3 P2 P1P4

Figure 5.10Pipelined addition.
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Pipeline Program Examples 

Adding Numbers

The basic code for process Pi :

recv(&accumulation, Pi-1);

accumulation = accumulation + number;

send(&accumulation, Pi+1);

except for the first process, P0, which is

send(&number, P1);

and the last process, Pn−1, which is

recv(&number, Pn-2);

accumulation = accumulation + number;

SPMD program

if (process > 0) {

recv(&accumulation, Pi-1);

accumulation = accumulation + number;

}

if (process < n-1) send(&accumulation, Pi+1);

The final result is in the last process.

Instead of addition, other arithmetic operations could be done.
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P0P2 P1Pn−1

Figure 5.11Pipelined addition numbers with a master process and ring configuration.

dn−1… d2d1d0

Master process

Sum

Slaves
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P0P2 P1Pn−1

Figure 5.12Pipelined addition of numbers with direct access to slave processes.

Master process

Sum

Slavesdn−1 d0d1

Numbers
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Analysis

Our first pipeline example is Type 1. We will assume that each process performs similar
actions in each pipeline cycle. Then we will work out the computation and communication
required in a pipeline cycle.

The total execution time:

ttotal = (time for one pipeline cycle)(number of cycles)

ttotal = (tcomp + tcomm)(m + p − 1)

where there are m instances of the problem and p pipeline stages (processes). 

 The average time for a computation is given by

Single Instance of Problem
tcomp = 1

tcomm = 2(tstartup + tdata)

ttotal = (2(tstartup + tdata) + 1)n

The time complexity = Ο(n).

Multiple Instances of Problem
ttotal = (2(tstartup + tdata) + 1)(m + n − 1)

 ≈ 2(tstartup + tdata) + 1

That is, one pipeline cycle

Data Partitioning with Multiple Instances of Problem
tcomp = d

tcomm = 2(tstartup + tdata)

ttotal = (2(tstartup + tdata) + d)(m + n/d − 1)

As we increase the d, the data partition, the impact of the communication diminishes. But
increasing the data partition decreases the parallelism and often increases the execution
time.

ta
ttotal

m
---------- =

ta
ttotal

m
---------- =
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Figure 5.13Steps in insertion sort with five numbers.

P0P2P3P4 P1

Time

1

2

3

4

5

6

8

7

(cycles)

9

10

Sorting Numbers

A parallel version of insertion sort. (The sequential version is akin to placing playing cards
in order by moving cards over to insert a card in position )

The basic algorithm for process Pi is

recv(&number, Pi-1);

if (number > x) {

send(&x, Pi+1);

x = number;

} else send(&number, Pi+1);

With n numbers, how many the ith process is to accept is known; it is given by n − i. How

many to pass onward is also known; it is given by n − i − 1 since one of the numbers re-

ceived is not passed onward. Hence, a simple loop could be used.
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Largest numberNext largest
number

Series of numbers
xn−1 … x1x0

Figure 5.14Pipeline for sorting using insertion sort.
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P0P2 P1Pn−1

Figure 5.15Insertion sort with results returned to the master process using a bidirectional line configuration.

dn−1… d2d1d0
Sorted sequence

Master process

Incorporating results being returned, process i could have the form

right_procno = n - i - 1;/* no of processes to the right */

recv(&x, Pi-1);

for (j = 0; j < right_procno; j++) {

recv(&number, Pi-1);

if (number > x) {

send(&x, Pi+1);

x = number;

} else send(&number, Pi+1);

}

send(&number, Pi-1);/* send number held */

for (j = 0; j < right_procno; j++) {/* pass on other numbers */

recv(&x, Pi+1);

send(&x, Pi-1);

}
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Figure 5.16Insertion sort with results returned.

Sorting phaseReturning sorted numbers

2n − 1n

Shown for n = 5

Analysis

Sequential

Obviously a very poor sequential sorting algorithm and unsuitable except for very small n. 

Parallel
Each pipeline cycle requires at least

tcomp = 1

tcomm = 2(tstartup + tdata)

The total execution time, ttotal, is given by

ttotal = (tcomp + tcomm)(2n − 1) = (1 + 2(tstartup + tdata))(2n − 1)

tsn1 – ()n2 – ()…21 ++++nn1 – ()
2

-------------------- ==
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Prime Number Generation

Sieve of Eratosthenes

A series of all integers is generated from 2. The first number, 2, is prime and kept. All
multiples of this number are deleted as they cannot be prime. The process is repeated with
each remaining number. The algorithm removes nonprimes, leaving only primes.

Example
Suppose we want the prime numbers from 2 to 20. We start with all the numbers:

After considering 2, we get

where the numbers withare marked as not prime and not to be considered further. After
considering 3, we get

Subsequent numbers are considered in a similar fashion. However, to find the primes up to
n, it is only necessary to start at numbers up to . All multiples of numbers greater than

 will have been removed as they are also a multiple of some number equal or less than
.

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

n
n
n
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Sequential Code

A sequential program for this problem usually employs an array with elements initialized
to 1 (TRUE) and set to 0 (FALSE) when the index of the element is not a prime number.

Letting the last number be n and the square root of n be sqrt_n, we might have

for (i = 2; i < n; i++)

prime[i] = 1;/* Initialize array */

for (i = 2; i <= sqrt_n; i++)/* for each number */

if (prime[i] == 1) /* identified as prime */

for (j = i + i; j < n; j = j + i)/* strike out all multiples */

prime[j] = 0;/* includes already done */

The elements in the array still set to 1 identify the primes (given by the array indices). Then
a simple loop accessing the array can find the primes.

Sequential time

The number of iterations striking out multiples of primes will depend upon the prime. There
are n/2 − 1 multiples of 2, n/3 − 1 multiples of 3, and so on.

Hence, the total sequential time is given by

assuming the computation in each iteration equates to one computational step. The sequen-
tial time complexity is Ο(n2). 

ts
n
2
---1 –

n
3
---1 –

n
5
---1 –…

n

n
-------1 – ++++ =
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1st prime2nd prime

Series of numbers
xn−1 … x1x0

Figure 5.17Pipeline for sieve of Eratosthenes.
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Pipelined Implementation

The code for a process, Pi, could be based upon

recv(&x, Pi-1);

/* repeat following for each number */

recv(&number, Pi-1);

if ((number % x) != 0) send(&number, Pi+1);

A simple for loop is not sufficient for repeating the actions because each process will not
receive the same amount of numbers and the amount is not known beforehand.

A general technique for dealing with this situation in pipelines is to use a “terminator”
message, which is sent at the end of the sequence. Then each process could be

recv(&x, Pi-1);

for (i = 0; i < n; i++) {

recv(&number, Pi-1);

if (number == terminator) break;

if (number % x) != 0) send(&number, Pi+1);

}
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Solving a System of Linear Equations — 
Special Case

The final example is Type 3 in which the process can continue with useful work after
passing on information.

The objective here is to solve a system of linear equations of the so-called upper-triangular
form:

an−1,0x0 + an−1,1x1 + an−1,2x2 …+ an−1,n−1xn−1= bn−1
.
.

a2,0x0 + a2,1x1 + a2,2x2= b2
a1,0x0 + a1,1x1= b1
a0,0x0 = b0

where the a’s and b’s are constants and the x’s are unknowns to be found.

The method used to solve for the unknowns x0, x1, x2, …, xn−1 is a simple repeated “back”
substitution. First, the unknown x0 is found from the last equation; i.e.,

The value obtained for x0 is substituted into the next equation to obtain x1; i.e.,

The values obtained for x1 and x0 are substituted into the next equation to obtain x2:

and so on until all the unknowns are found.

Clearly, this algorithm can be implemented as a pipeline. The first pipeline stage computes
x0 and passes x0 onto the second stage, which computes x1 from x0 and passes both x0 and
x1 onto the next stage, which computes x2 from x0 and x1, and so on.

x0

b0

a0,0
--------- =

x1

b1a1,0x0 –

a1,1
--------------------------- =

x2

b2a2,0x0 –a2,1x1 –

a2,2
------------------------------------------------ =
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x0
x0

x0x0

x1
x1x1
x2x2

x3

Figure 5.18Solving an upper triangular set of linear equation using a pipeline.

Compute x0Compute x1Compute x2Compute x3

P0P1P2P3

The ith process (0 < i < n) receives the values x0, x1, x2, …, xi-1 and computes xi from the
equation

xi

biai,jxj

j0 =

i1 –

∑–

ai,i
--------------------------------- =
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Sequential Code

Given the constants ai,j and bk stored in arrays a[][] and b[], respectively, and the values
for unknowns to be stored in an array, x[], the sequential code could be

x[0] = b[0]/a[0][0];/* x[0] computed separately */

for (i = 1; i < n; i++) {/* for remaining unknowns */

sum = 0;

for (j = 0; j < i; j++

sum = sum + a[i][j]*x[j];

x[i] = (b[i] - sum)/a[i][i];

}
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Parallel Code

The pseudocode of process Pi (1 < i < n) of one pipelined version could be

for (j = 0; j < i; j++) {

recv(&x[j], Pi-1);

send(&x[j], Pi+1);

}

sum = 0;

for (j = 0; j < i; j++)

sum = sum + a[i][j]*x[j];

x[i] = (b[i] - sum)/a[i][i];

send(&x[i], Pi+1);

(P0 simply computes x0 and passes x0 on.) Now we have additional computations to do after

receiving and resending values.
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Figure 5.19Pipeline processing using back 
substitution.
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Analysis

For this pipeline, we cannot assume that the computational effort at each pipeline stage is
the same.

The first process, P0, performs one divide and one send().

The ith process (0 < i < n − 1) performs i recv()s, i send()s, i multiply/add, one divide/

subtract, and a final send(), a total of 2i + 1 communication times and 2i + 2 computational

steps assuming that multiply, add, divide, and subtract are each one step.

The last process, Pn−1, performs n − 1 recv()s, n − 1 multiply/adds, and one divide/sub-

tract, a total of n − 1 communication times and 2n − 1 computational steps.

P0P1P2P3P4

divide
send(x0)⇒recv(x0)
endsend(x0)⇒recv(x0)

multiply/addsend(x0)⇒recv(x0)
divide/subtractmultiply/addsend(x0)⇒recv(x0)
send(x1)⇒recv(x1)multiply/addsend(x1)⇒
endsend(x1)⇒recv(x1)multiply/add

multiply/addsend(x1)⇒recv(x1)
divide/subtractmultiply/addsend(x1)⇒
send(x2)⇒recv(x2)multiply/add
endsend(x2)⇒recv(x2)

multiply/addsend(x2)⇒
divide/subtractmultiply/add
send(x3)⇒recv(x3)
endsend(x3)⇒

multiply/add
divide/subtract
send(x4)⇒
end

Figure 5.20Operations in back substitution pipeline.

Time
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PROBLEMS

Scientific/Numerical

5-1.Write a parallel program to compute x16 using a pipeline approach. Repeat by applying a
divide-and-conquer approach. Compare the two methods analytically and experimentally.

5-2.Develop a pipeline solution to compute sinθ according to

A series of values are input, θ0, θ1, θ2, θ3, … .

5-3.Modify the program in Problem 5-2 to compute cosθ and tanθ.

5-4.Write a parallel program using pipelining to compute the polynomial

f = a0x0 + a1x1 + a2x2 + … + an−1xn−1

to any degree, n, where the a’s, x, and n are input. Compare the pipelined approach with the
divide-and-conquer approach (Problem 4-8 in Chapter 4).

5-5.Explore the trade-offs of increasing the data partition in the pipeline addition described in
Section . Write parallel programs to find the optimum data partition for your system.

5-6.Compare insertion sort (Section 5.3.2) implemented sequentially and implemented as a
pipeline, in terms of speedup and time complexity.

5-7.Rework the parallel code for finding prime numbers in Section 5.3.3 to avoid the use of the
mod operator to make the algorithm more efficient.

5-8.Radix sort is similar to the bucket sort described in Chapter 4, Section 4.2.1, but specifically
uses the bits of the number to identify the bucket into which each number is placed. First the
most significant bit is used to place each number into one of two buckets. Then the next most
significant bit is used to place each number in each bucket into one of two buckets, and so on
until the least significant bit is reached. Reformulate the algorithm to become a pipeline where
all the numbers are passed reordered from stage to stage until finally sorted. Write a parallel
program for this method and analyze the method.

5-9.A pipeline consists of four stages, as shown in Figure 5.21. Each stage performs the operation

yout = yin + a × x

Determine the overall computation performed.

θ sinθθ
3
--- –θ

5
---θ

7
--- –θ

9
---…– ++ =

x1x2

x

x3x4

yinyout

a

x

yinyout

a

x

yinyout

a

x

yinyout

a

a1a2a3a4

y4y3y2y1Output

Figure 5.21Pipeline for Problem 5-9.
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5-10.The outer product of two vectors (one-dimensional arrays), A and B, produces a matrix (a two
dimensional array), C, as given by

Formulate pipeline implementation for this calculation given that the elements of A (a0, a1, …,
an−1) enter together from the left of the pipeline and one element of B is stored in one pipeline
stage (P0 stores b0, P1 stores b1, etc.). Write a parallel program for this problem.

5-11.Compare implementing the sieve of Eratosthenes by each of the following ways:

(i)By the pipeline approach as described in Section 5.3.3

(ii)By having each process strike multiples of a single number

(iii)By dividing the range of numbers into m regions and assigning one region to each
process to strike out multiples of prime numbers. Use a master process to broadcast each
prime number as found to processes

Perform an analysis of each method.

5-12.(For those with knowledge of computer architecture.) Write a parallel program to model a five-
stage RISC processor (reduced instruction set computer), as described in Hennessy and
Patterson (1990). The program is to accept a list of machine instructions and shows the flow of
instructions through the pipeline, including any pipeline stalls due to dependencies/resource
conflicts. Use a single valid bit associated with each register to control access to registers, as
described in Wilkinson (1996).

ABT

a0

.

.
an1 –

b0..bn1 –a0b0..a0bn1 –

....

....
an1 –b0..an1 –bn1 –

==

ABTC
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Real Life

5-13.As mentioned in Section 5.1, pipelining could be used to implement an audio frequency-
amplitude histogram display in a sound system, as shown in Figure 5.22(a). This application
could also be implemented by an embarrassingly parallel, functional decomposition, where
each process accepts the audio input directly, as shown in Figure 5.22(b). For each method,
write a parallel program to produce a frequency-amplitude histogram display using an audio
file as input. Analyze both methods. (Some research may be necessary to develop how to
recognize frequencies in a digitized signal.)

Display

Pipeline

Audio input
(digitized)

Figure 5.22Audio histogram display.

Display

Audio input
(digitized)

(a) Pipeline solution(b) Direct decomposition


