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P0P1P2Pn−1

Processes

Barrier

Figure 6.1Processes reaching the barrier at 
different times.

Time

Active

Waiting

Synchronous Computations
In a (fully) synchronous application, all the processes are synchronized at regular points.

A barrier, a basic mechanism for synchronizing processes - inserted at the point in each
process where it must wait.

All processes can continue from this point when all the processes have reached it (or, in
some implementations, when a stated number of processes have reached this point). 
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P0
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Figure 6.2Library call barriers.
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Barrier();

Pn−1

Barrier();

Processes wait until 
all reach their 
barrier call

In message-passing systems, barriers are often provided with library routines:

MPI has the barrier routine, MPI_Barrier(), with a named communicator being the only
parameter.

MPI_Barrier() is called by each process in the group, blocking until all members of the
group have reached the barrier call and only returning then.

PVM has a similar barrier routine, pvm_barrier(), which is used with a named group of
processes.

PVM has the unusual feature of specifying the number of processes that must reach the
barrier to release the processes.
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P0

Processes

Figure 6.3Barrier using a centralized counter.
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Barrier();
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Barrier();

Counter, C

Increment
and check for n

Implementation

Centralized counter implementation (sometimes called a linear barrier):
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for(i=0;i<n;i++)
recv(Pany);

for(i=0;i<n;i++)
send(Pi);

Master

Figure 6.4Barrier implementation in a message-passing system.

Arrival
phase
Departure
phase

send(Pmaster);
recv(Pmaster);

Barrier:

send(Pmaster);
recv(Pmaster);

Barrier:

Slave processes

Counter-based barriers often have two phases:

A process enters arrival phase and does not leave this phase until all processes
have arrived in this phase.

Then processes move to departure phase and are released.

Good implementations of a barrier must take into account that a barrier might be used more
than once in a process. It might be possible for a process to enter the barrier for a second
time before previous processes have left the barrier for the first time. The two-phase design
handles this scenario.

Example code:

Master:

for (i = 0; i < n; i++)/* count slaves as they reach their barrier */

recv(Pany);

for (i = 0; i < n; i++)/* release slaves */

send(Pi);

Slave processes:

send(Pmaster);

recv(Pmaster);
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P0P1P2P3P4P5P6P7

Arrival
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Departure
from barrier

Figure 6.5Tree barrier.

Sychronizing
message

Tree Implementation

More efficient. Suppose there are eight processes, P0, P1, P2, P3, P4, P5, P6, and P7:

First stage:P1 sends message to P0; (when P1 reaches its barrier)
P3 sends message to P2; (when P3 reaches its barrier)
P5 sends message to P4; (when P5 reaches its barrier)
P7 sends message to P6; (when P7 reaches its barrier)

Second stage:P2 sends message to P0; (P2 and P3 have reached their barrier)
P6 sends message to P4; (P6 and P7 have reached their barrier)

Third stage:P4 sends message to P0; (P4, P5, P6, and P7 have reached their barrier)
P0 terminates arrival phase; (when P0 reaches barrier and has received

message from P4)

Release with a reverse tree construction.
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1st stage

2nd stage

3rd stage

P0P1P2P3P4P5P6P7

Time

Figure 6.6Butterfly construction.

Butterfly Barrier

The tree construction can be developed into a so-called butterfly, in which pairs of
processes synchronize at each stage:

First stageP0 ↔ P1, P2 ↔ P3, P4 ↔ P5, P6 ↔ P7
Second stageP0 ↔ P2, P1 ↔ P3, P4 ↔ P6, P5 ↔ P7
Third stageP0 ↔ P4, P1 ↔ P5, P2 ↔ P6, P3 ↔ P7
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Local Synchronization

Example

Suppose a process Pi needs to be synchronized and to exchange data with process Pi−1 and
process Pi+1 before continuing:

Not a perfect three-process barrier because process Pi−1 will only synchronize with Pi and
continue as soon as Pi allows. Similarly, process Pi+1 only synchronizes with Pi. 

Process Pi−1Process PiProcess Pi+1

recv(Pi);send(Pi-1);recv(Pi);

send(Pi);send(Pi+1);send(Pi);

recv(Pi-1);

recv(Pi+1);

127
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Deadlock

When a pair of processes each send and receive from each other, deadlock may occur.

Deadlock will occur if both processes perform the send, using synchronous routines first
(or blocking routines without sufficient buffering). This is because neither will return; they
will wait for matching receives that are never reached.

A Solution:

Arrange for one process to receive first and then send and the other process to send first and
then receive.

Example

Linear pipeline, deadlock can be avoided by arranging so the even-numbered
processes perform their sends first and the odd-numbered processes perform
their receives first.

Combined deadlock-free blocking sendrecv() routines

MPI provides routine MPI_Sendrecv() and MPI_Sendrecv_replace().

Example

Process Pi−1Process PiProcess Pi+1

sendrecv(Pi);sendrecv(Pi-1);

sendrecv(Pi+1);sendrecv(Pi);
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a[0]=a[0]+k;a[n-1]=a[n-1]+k; a[1]=a[1]+k;

Instruction
a[] = a[] + k;

a[0]a[n-1] a[1]

Figure 6.7Data parallel computation.

Processors

Synchronized Computations

Data Parallel Computations

In a data parallel computation, the same operation is performed on different data elements
simultaneously; i.e., in parallel.

Particularly convenient because:

Ease of programming (essentially only one program).

Can scale easily to larger problem sizes.

Many numeric and some non-numeric problems can be cast in a data parallel form.

Example of a data parallel computation

To add the same constant to each element of an array:

for (i = 0; i < n; i++)

a[i] = a[i] + k;

The statement a[i] = a[i] + k could be executed simultaneously by multiple processors,

each using a different index i (0 < i ≤ n).
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Forall construct

Special “parallel” construct in parallel programming languages to specify data parallel
operations

Example

forall (i = 0; i < n; i++) {

body

}

states that n instances of the statements of the body can be executed simultaneously.

One value of the loop variable i is valid in each instance of the body, the first instance has
i = 0, the next i = 1, and so on.

To add k to each element of an array, a, we can write

forall (i = 0; i < n; i++)

a[i] = a[i] + k;

Data parallel technique applied to multiprocessors and multicomputers - Example:

To add k to the elements of an array:

i = myrank;

a[i] = a[i] + k;/* body */

barrier(mygroup);

where myrank is a process rank between 0 and n − 1. 
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Prefix Sum Problem

Given a list of numbers, x0, …, xn−1, compute all the partial summations (i.e., x0 + x1; x0 +
x1 + x2; x0 + x1 + x2 + x3; … ).

The prefix calculation can also be defined with associative operations other than addition;
for example, subtraction, multiplication, maximum, minimum, and logical (Boolean) oper-
ations (AND, OR, exclusive OR, etc.).

Widely studied in connection with various computational models. Practical applications in
areas such as processor allocation, data compaction, sorting, and polynomial evaluation.

The sequential code for the prefix problem could be

for(i = 0; i < n; i++) {

sum[i] = 0;

for (j = 0; j <= i; j++)

sum[i] = sum[i] + x[j];

}

This is an Ο(n2) algorithm.
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Figure 6.8Data parallel prefix sum operation.
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Data parallel method of adding all partial sums of 16 
numbers

Sequential code might be written as

for (j = 0; j < log(n); j++)/* at each step */

for (i = 2j; i < n; i++)/* add to accumulating sum */

x[i] = x[i] + x[i - 2j]; 

Parallel code:

for (j = 0; j < log(n); j++)/* at each step */

forall (i = 0; i < n; i++)/* add to accumulating sum */

if (i >= 2j) x[i] = x[i] + x[i - 2j];
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Synchronous Iteration

The term synchronous iteration or synchronous parallelism is used to describe solving a
problem by iteration where each iteration is composed of several processes that start
together at the beginning of each iteration and the next iteration cannot begin until all
processes have finished the previous iteration.

The forall construct could be used to specify the parallel bodies of the synchronous iter-
ation:

for (j = 0; j < n; j++)/* for each synchronous iteration */

forall (i = 0; i < N; i++) {/* N processes each executing */

body(i);/* body using specific value of i */

}

In our case:

for (j = 0; j < n; j++) {/* for each synchronous iteration */

i = myrank;/* find value of i to be used */

body(i);/* body using specific value of i */

barrier(mygroup);

}
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Solving a System of Linear Equations by 
Iteration

Suppose the equations are of a general form with n equations and n unknowns

where the unknowns are x0, x1, x2, … xn−1 (0 ≤ i < n).

One way to solve these equations for the unknowns is by iteration. By rearranging the ith
equation:

to

xi = (1/ai,i)[bi − (ai,0x0 + ai,1x1 + ai,2x2 …ai,i−1xi−1 + ai,i+1xi+1 … + ai,n−1xn−1)]

or

This equation gives xi in terms of the other unknowns and can be be used as an iteration
formula for each of the unknowns to obtain better approximations.

The iterative method described is called a Jacobi iteration – all values of x are updated
together.

It can be proven that the Jacobi method will converge if the diagonal values of a have an
absolute value greater than the sum of the absolute values of the other a’s on the row (the
array of a’s is diagonally dominant) i.e. if

This condition is a sufficient but not a necessary condition.

an−1,0x0 + an−1,1x1 + an−1,2x2 …+ an−1,n−1xn−1= bn−1
.
.
.

a2,0x0 + a2,1x1 + a2,2x2 …+ a2,n−1xn−1= b2
a1,0x0 + a1,1x1 + a1,2x2 …+ a1,n−1xn−1= b1
a0,0x0 + a0,1x1 + a0,2x2 …+ a0,n−1xn−1= b0

ai,0x0 + ai,1x1 + ai,2x2 …+ ai,n−1xn−1= bi

xi
1

aii,
-------biaij ,xj

ji ≠∑– =

aij ,
ji ≠∑aii, <
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Error

Iteration
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Figure 6.9Convergence rate. t+1 t

Termination

A simple, common approach is to compare values computed in each iteration to the values
obtained from the previous iteration, and then to terminate the computation in the tth
iteration when all values are within a given tolerance; i.e., when

for all i, where  is the value of xi after the tth iteration and  is the value of xi after
the (t − 1)th iteration.

However, this does not guarantee the solution to that accuracy.

xi
txi

t1 – –error tolerance <

xi
txi

t1 –
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Sequential Code

Given the arrays a[][] and b[] holding the constants in the equations, x[] holding the
unknowns, and a fixed number of iterations:

for (i = 0; i < n; i++)

x[i] = b[i];/*initialize unknowns*/

for (iteration = 0; iteration < limit; iteration++) {

for (i = 0; i < n; i++) {/* for each unknown */

sum = 0;

for (j = 0; j < n; j++)/* compute summation of a[][]x[] */

if (i != j) sum = sum + a[i][j] * x[j];

new_x[i] = (b[i] - sum) / a[i][i];/* compute unknown */

}

for (i = 0; i < n; i++)

x[i] = new_x[i];/* update values */

}

Slight more efficient sequential code: 

for (i = 0; i < n; i++)

x[i] = b[i];/*initialize unknowns*/

for (iteration = 0; iteration < limit; iteration++) {

for (i = 0; i < n; i++) {/* for each unknown */

sum = -a[i][i] * x[i];

for (j = 0; j < n; j++)/* compute summation */

sum = sum + a[i][j] * x[j];

new_x[i] = (b[i] - sum) / a[i][i];/* compute unknown */

}

for (i = 0; i < n; i++) x[i] = new_x[i];/* update values */

}
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Parallel Code

Process Pi could be of the form

x[i] = b[i]; /*initialize unknown*/

for (iteration = 0; iteration < limit; iteration++) {

sum = -a[i][i] * x[i];

for (j = 0; j < n; j++)  /* compute summation */

sum = sum + a[i][j] * x[j];

new_x[i] = (b[i] - sum) / a[i][i];/* compute unknown */

broadcast_receive(&new_x[i]); /* broadcast value */

global_barrier(); /* wait for all processes */

}

The broadcast routine, broadcast_receive(), sends the newly computed value of x[i]
from process i to every other process and collects data broadcast from the other processes.

An alternative simple solution is to return to basic send()s and recv()s, for
broadcast_receive(); i.e., process i might have

for (j = 0; j < n; j++) if (i != j) send(&x[i], Pj);

for (j = 0; j < n; j++) if (i != j) recv(&x[j], Pj);
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Figure 6.10Allgather operation.
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Typically, we want to Iterate until the approximations are sufficiently close, rather than for
a fixed number of times (which may not provide a sufficiently accurate solution).

Each process could check its own computed value with, say,

x[i] = b[i]; /*initialize unknown*/

iteration = 0;

do {

iteration++;

sum = -a[i][i] * x[i];

for (j = 1; j < n; j++)  /* compute summation */

sum = sum + a[i][j] * x[j];

new_x[i] = (b[i] - sum) / a[i][i];/* compute unknown */

broadcast_receive(&new_x[i]); /* broadcast value and wait */

} while (tolerance() && (iteration < limit));

where tolerance() returns FALSE if ready to terminate; otherwise it returns TRUE.
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Partitioning

Usually the number of processors is much fewer than the number of data items to be
processed (computing unknowns in this case).

Normally partition the problem so that processors take on more than one data item. In the
problem at hand, each process can be responsible for computing a group of unknowns.

block allocation – allocate unknowns to processors in simple increasing order; i.e., with p
processors and n unknowns. 

cyclic allocation – processors are allocated one unknown in order; i.e., processor P0 is
allocated x0, xp, x2p, …, x((n/p)−1)p, processor P1 is allocated x1, xp+1, x2p+1, …, x((n/p)−1)p+1,
and so on. 

Cyclic allocation no particular advantage here (Indeed, may be disadvantageous because
the indices of unknowns have to be computed in a more complex way).
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Figure 6.11Effects of computation and communication in Jacobi iteration.

Overall
Communication

Computation

Execution

Number of processors, p

time
(τ = 1)

Analysis

Suppose there are n equations and p processors.

A processor operates upon n/p unknowns.

Suppose there are τ iterations.

One iteration has a computational phase and a broadcast communication phase.

Computation.

tcomp = n/p(2n + 4)τ

Communication.

tcomm = p(tstartup + (n/p)tdata)τ = (ptstartup + ntdata)τ

Overall.

tp = (n/p(2n + 4) + ptstartup + ntdata)τ

The resulting total execution time has a minimum value.
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Figure 6.12Heat distribution problem.

Enlarged

Heat Distribution Problem

Consider a square metal sheet that has known temperatures along each of its edges. The
temperature of the interior surface of the sheet will depend upon the temperatures around it.

We can find the temperature distribution by dividing the area into a fine mesh of points, hi,j. 

The temperature at an inside point can be taken to be the average of the temperatures of the
four neighboring points.

Convenient to describe the edges by points adjacent to the interior points. The interior
points of hi,j are where 0 < i < n, 0 < j < n [(n − 1) × (n − 1) interior points].

Compute the temperature of each point by iterating the equation

(0 < i < n, 0 < j < n) for a fixed number of iterations or until the difference between iterations
of a point is less than some very small prescribed amount.

hij ,
hi1 –j ,hi1 +j ,hij1 – ,hij1 + , +++

4
------------------------------------------------------------------------------------ =
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Figure 6.13Natural ordering of heat 
distribution problem.

Actually, we are solving a system of linear equations.

Each point is an unknown dependent upon a few other unknowns, rather than all the other
unknowns in the general case.

To clarify this relationship, consider the array of points as numbered in so-called natural
order, starting at zero at the top left corner and in rows of k points:

The points are numbered from 1 for convenience and include those representing the edges.

Each point will then use the equation

This could be written as a linear equation containing the unknowns xi−k, xi−1, xi+1, and xi+k:

xi−k + xi−1 − 4xi + xi+1 + xi−k = 0

Known as the finite difference method.

We are also solving Laplace’s equation.

xi

xi1 –xi1 +xik –xik + +++

4
----------------------------------------------------------------- =
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Sequential Code

Using a fixed number of iterations

for (iteration = 0; iteration < limit; iteration++) {

  for (i = 1; i < n; i++)

    for (j = 1; j < n; j++)

      g[i][j] = 0.25 * (h[i-1][j] + h[i+1][j] + h[i][j-1] + h[i][j+1]);

  for (i = 1; i < n; i++)/* update points */

    for (j = 1; j < n; j++)

      h[i][j] = g[i][j];

}

To stop at some precision:

do {

  for (i = 1; i < n; i++)

    for (j = 1; j < n; j++) 

      g[i][j] = 0.25*(h[i-1][j] + h[i+1][j] + h[i][j-1] + h[i][j+1]);

 

  for (i = 1; i < n; i++)/* update points */

    for (j = 1; j < n; j++)

      h[i][j] = g[i][j];

  continue = FALSE;/* indicates whether to continue */

  for (i = 1; i < n; i++)/* check each pt for convergence */

    for (j = 1; j < n; j++)

      if (!converged(i,j) {/* point found not converged */

        continue = TRUE;

        break;

      }

} while (continue == TRUE);
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Parallel Code

Version with a fixed number of iterations, process Pi,j (except for the boundary points):

for (iteration = 0; iteration < limit; iteration++) {

g = 0.25 * (w + x + y + z);

send(&g, Pi-1,j);/* non-blocking sends */

send(&g, Pi+1,j);

send(&g, Pi,j-1);

send(&g, Pi,j+1);

recv(&w, Pi-1,j);/* synchronous receives */

recv(&x, Pi+1,j);

recv(&y, Pi,j-1);

recv(&z, Pi,j+1);

}

after suitable initialization of w, x, y, and z.

Each process has its own iteration loop. The number of iterations must be sent to each pro-
cess.

It is important to use send()s that do not block while waiting for the recv()s; otherwise

the processes would deadlock, each waiting for a recv() before moving on.

The recv()s must be synchronous and wait for the send()s. Each process will be synchro-

nized with its four neighbors by the recv()s. 

Local
barrier
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send(g, Pi-1,j);

send(g, Pi+1,j);

send(g, Pi,j-1);

send(g, Pi,j+1);

recv(w, Pi-1,j)

recv(x, Pi+1,j);

recv(y, Pi,j-1);

send(g, Pi-1,j);

send(g, Pi+1,j);

send(g, Pi,j-1);

send(g, Pi,j+1);

recv(w, Pi-1,j)

recv(x, Pi+1,j);

recv(y, Pi,j-1);

send(g, Pi-1,j);

send(g, Pi+1,j);

send(g, Pi,j-1);

send(g, Pi,j+1);

recv(w, Pi-1,j)

recv(x, Pi+1,j);

recv(y, Pi,j-1);

send(g, Pi-1,j);

send(g, Pi+1,j);

send(g, Pi,j-1);

send(g, Pi,j+1);

recv(w, Pi-1,j)

recv(x, Pi+1,j);

recv(y, Pi,j-1);

recv(z, Pi,j+1);

send(g, Pi-1,j);

send(g, Pi+1,j);

send(g, Pi,j-1);

send(g, Pi,j+1);

recv(w, Pi-1,j)

recv(x, Pi+1,j);

recv(y, Pi,j-1);

recv(z, Pi,j+1);

Figure 6.14Message passing for heat distribution problem.

i

j

column

row
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Version where processes stop when they reach their required precision:

iteration = 0;

do {

iteration++;

g = 0.25 * (w + x + y + z);

send(&g, Pi-1,j);/* locally blocking sends */

send(&g, Pi+1,j);

send(&g, Pi,j-1);

send(&g, Pi,j+1);

recv(&w, Pi-1,j);/* locally blocking receives */

recv(&x, Pi+1,j);

recv(&y, Pi,j-1);

recv(&z, Pi,j+1);

} while((!converged(i, j)) || (iteration < limit)); 

send(&g, &i, &j, &iteration, Pmaster);

To handle the processes operating at the edges, we could use the process ID to
determine the location of the process in the array, leading to code such as

if (last_row) w = bottom_value;

if (first_row) x = top_value;

if (first_column) y = left_value;

if (last_column) z = right_value;

iteration = 0;

do {

iteration++;

g = 0.25 * (w + x + y + z);

if !(first_row) send(&g, Pi-1,j);

if !(last_row) send(&g, Pi+1,j);

if !(first_column) send(&g, Pi,j-1);

if !(last_column) send(&g, Pi,j+1);

if !(last_row) recv(&w, Pi-1,j);

if !(first_row) recv(&x, Pi+1,j);

if !(first_column) recv(&y, Pi,j-1);

if !(last_column) recv(&z, Pi,j+1);

} while((!converged) || (iteration < limit)); 

send(&g, &i, &j, iteration, Pmaster);

.
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Figure 6.15Partitioning heat distribution problem.

BlocksStrips (columns)

Partitioning

Normally allocate more than one point to each processor, because there would be many
more points than processors. The mesh of points could be partitioned into square blocks or
strips (columns):
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Square blocks

Strips

n

n
p
---

Figure 6.16Communication consequences of partitioning.

Block partition:

Four edges where data points are exchanged. Communication time is given by

This equation is only valid for p ≥ 9 when at least one block has four communicating edges.

Strip partition

Two edges where data points are exchanged. Communication time is given by

tcommsq8tstartup
n
p
---tdata + 

 =

tcommcol4tstartupntdata + () =
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Processors, p
Figure 6.17Startup times for block and 
strip partitions.

Optimum

In general, the strip partition is best for a large startup time, and a block partition is best for
a small startup time. With the previous equations, the block partition has a larger commu-
nication time than the strip partition if

or

(p ≥ 9). 

8tstartup
n
p
---tdata + 

4tstartupntdata + () >

tstartupn12

p
------- – 

tdata >
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Ghost points

Process i

Process i+1

One row
of points

Array held
by process i

Array held
by process i+1

Figure 6.18Configurating array into contiguous rows for each process, with ghost points.

Copy

Ghost Points

Convenient to an additional row of points at each edge, called ghost points, that hold the
values from the adjacent edge. Each array of points is increased to accommodate the ghost
rows. 
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Safety and Deadlock

When all processes send their messages first and then receive all of their messages, as in all
the code so far, is described as “unsafe” in the MPI literature because it relies upon
buffering in the send()s. The amount of buffering is not specified in MPI.

If a send routine has insufficient storage available when it is called, the implementation
should be such to delay the routine from returning until storage becomes available or until
the message can be sent without buffering.

Hence, the locally blocking send() could behave as a synchronous send(), only returning
when the matching recv() is executed. Since a matching recv() would never be executed
if all the send()s are synchronous, deadlock would occur.

A way of making the code safe is to alternate the order of the send()s and recv()s
in adjacent processes. This is so that only one process performs the send()s first. 

Then even synchronous send()s would not cause deadlock. In fact, a good way you can test
for safety is to replace message-passing routines in a program with synchronous versions.

Safe code, by alternating the send()s and recv()s, could be of the form

if ((myid % 2) == 0) { /* even processes */

send(&g[1][1], &m, Pi-1);

recv(&h[1][0], &m, Pi-1);

send(&g[1,m], &m, Pi+1);

recv(&h[1][m+1], &m, Pi+1);

} else {/* odd numbered processes */

recv(&h[1][0], &m, Pi-1);

send(&g[1][1], &m, Pi-1);

recv(&h[1][m+1], &m, Pi+1);

send(&g[1,m], &m, Pi+1);

}
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MPI Safe message Passing Routines

MPI offers several alternative methods for safe communication:

•Combined send and receive routines: MPI_Sendrecv() (which is guaranteed not to
deadlock)

•Buffered send()s: MPI_Bsend() — here the user provides explicit storage space

•Nonblocking routines: MPI_Isend() and MPI_Irecv() — here the routine returns
immediately, and a separate routine is used to establish whether the message has
been received (MPI_Wait(), MPI_Waitall(), MPI_Waitany(), MPI_Test(),
MPI_Testall(), or MPI_Testany())

A pseudocode segment using the third method is

isend(&g[1][1], &m, Pi-1);

isend(&g[1,m], &m, Pi+1);

irecv(&h[1][0], &m, Pi-1);

irecv(&h[1][m+1], &m, Pi+1);

waitall(4);

Essentially, the wait routine becomes a barrier, waiting for all the message-passing routines
to complete.

153
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Cellular Automata

In this approach, the problem space is first divided into cells.

Each cell can be in one of a finite number of states.

Cells are affected by their neighbors according to certain rules, and all cells are affected
simultaneously in a “generation.” 

The rules are reapplied in subsequent generations so that cells evolve, or change state, from
generation to generation.

The most famous cellular automata is the “Game of Life” devised by John Horton
Conway, a Cambridge mathematician, and published by Gardner (Gardner, 1967). 

The Game of Life

Board game; the board consists of a (theoretically infinite) two-dimensional array of cells.

Each cell can hold one “organism” and has eight neighboring cells, including those diago-
nally adjacent.

Initially, some of the cells are occupied in a pattern.

The following rules apply:

1.Every organism with two or three neighboring organisms survives for the next gen-
eration.

2.Every organism with four or more neighbors dies from overpopulation.

3.Every organism with one neighbor or none dies from isolation.

4.Each empty cell adjacent to exactly three occupied neighbors will give birth to an
organism.

These rules were derived by Conway “after a long period of experimentation.”
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Simple Fun Examples of Cellular Automata

“Sharks and Fishes” in the sea, each with different behavior rules.

An ocean could be modeled as a three-dimensional array of cells.

Each cell can hold one fish or one shark (but not both).

Fish might move around according to these rules:

1.If there is one empty adjacent cell, the fish moves to this cell.

2.If there is more than one empty adjacent cell, the fish moves to one cell chosen at
random.

3.If there are no empty adjacent cells, the fish stays where it is.

4.If the fish moves and has reached its breeding age, it gives birth to a baby fish, which
is left in the vacating cell.

5.Fish die after x generations.

The sharks might be governed by the following rules:

1.If one adjacent cell is occupied by a fish, the shark moves to this cell and eats the fish.

2.If more than one adjacent cell is occupied by a fish, the shark chooses one fish at
random, moves to the cell occupied by the fish, and eats the fish.

3. If no fish are in adjacent cells, the shark chooses an unoccupied adjacent cell to move
to in a similar manner as fish move.

4.If the shark moves and has reached its breeding age, it gives birth to a baby shark,
which is left in the vacating cell.

5.If a shark has not eaten for y generations, it dies.

Similar examples: “foxes and rabbits” -The behavior of the rabbits is to move around
happily whereas the behavior of the foxes is to eat any rabbits they come across.

Serious Applications for Cellular Automata

Examples - fluid/gas dynamics, the movement of fluids and gases around objects or
diffusion of gases, biological growth, airflow across an airplane wing, erosion/movement
of sand at a beach or riverbank.
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PROBLEMS

Scientific/Numerical

6-1.Implement the counter barrier described in Figure 6.4, and test it. Is it necessary to use
blocking or synchronous routines for both send and receive? Explain.

6-2.Write a barrier, barrier(procno), which will block until procno processes reach the barrier
and then release the processes. Allow for the barrier to be called with different numbers of
processes and with different values for procno.

6-3.Investigate the time that a barrier takes to operate by using code such as

t1 = time();
Barrier(group);
t2 = time();
printf(“Elapsed time = %d”, difftime(t2, t1));

(In MPI the barrier routine is MPI_Barrier(Communicator). The time routine is
MPI_Wtime().) Investigate different numbers of processes.

6-4.Write code to implement an eight-process barrier using the tree construction described in
Section  and compare with any available barrier calls (e.g., in MPI MPI_Barrier()).

6-5.Implement the butterfly barrier described in Section 6.1.4, and compare with any available
barrier calls.

6-6.Determine experimentally at what point in your system the limit to buffering is reached when
using nonblocking sends. Establish the effects of requesting more buffering than is available.
(It may be that the amount of buffering available is related to the amount of memory being used
for other purposes.)

6-7.Can noncommutative operators such as division be used in the prefix calculation of Figure 6.8? 

6-8.Determine the efficiency of the prefix calculation of Figure 6.8.

6-9.Given a fixed rectangular area with sides x and y and a communication that is proportional to
the perimeter, 2(x + y), show that the minimum communication is given by x = y (i.e., a square).

6-10.Write a parallel program to solve the one-dimensional problem based upon finite difference
equation

for 0 ≤ i ≤ 1000, given that x0 = 10 and x1000 = 250.

6-11.In the text, we have assumed a square array for the heat distribution problem of Section 6.3.2.
What are the mathematical conditions for choosing blocks or strips as the partition if the array
has a length of n points and a width of m points?

xi

xi1 –xi1 + +

2
----------------------------- =
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6-12.Investigate the accuracy of convergence of the heat distribution problem using different termi-
nation methods described in Section . Determine whether it is sufficient to use the difference
between the present and next values of the points or whether it is necessary to use a more
complex termination calculation. The basic question being investigated here is, “If each point
is computed until each is within 1% (say) of its previous computed value, what is the accuracy
of the solution?”

6-13.Write a parallel program to simulate the Game of Life as described in Section  and experiment
with different initial populations.
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Real Life

6-14.Figure 6.19 shows a room that has four walls and a fireplace. The temperature of the wall is
20°C, and the temperature of the fireplace is 100°C. Write a parallel program using Jacobi
iteration to compute the temperature inside the room and plot (preferably in color) temperature
contours at 10°C intervals using Xlib calls or similar graphics calls as available on your
system. Instrument the code so that the elapsed time is displayed. (This programming assign-
ment is convenient after a Mandelbrot assignment because it can use the same graphics calls.)

6-15.Repeat Problem 6-14 but with a round room of diameter 20 ft and a point heat source in the
center at 100°C; the walls are at 20°C.

20°C
100°C

10ft

10ft

4ft

Figure 6.19Room for Problem 6-14.
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6-16.Simulate a road junction controlled by traffic lights as shown in Figure 6.20. Vehicles come
from all four directions along the roads and either wish to pass straight through the junction to
the other side, or turn left, or turn right. On average, 70% of vehicles wish to pass straight
through, 10% wish to turn right, and 20% wish to turn left. Each vehicle moves at the same
speed up to the junction. Develop a set of driving rules to solve this problem by a cellular
automata approach, and implement them in a parallel program using your own test data
(vehicle numbers and positions).

6-17.Write a parallel program to simulate the actions of the sharks and fish as described in Section
. The parameters that are input are size of ocean, number of fish and sharks, their initial
placement in the ocean, breeding ages, and shark starvation time. Adjacent cells do not include
diagonally adjacent cells. Therefore, there are six adjacent cells, except for the edges. For every
generation, the fishes’ and sharks’ ages are incremented by one. Modify the simulation to take
into account currents in the water.

vehicle

Figure 6.20Road junction for Problem
6-16.
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6-23.(A research assignment) Develop the rules necessary to model the airflow across a wing as
shown in Figure 6.21 (two dimensions). Select your own dimensions for the solution space and
object. Select the number of grid points and write code to solve the problem.

Airflow

Figure 6.21Figure for Problem 6-23.

Actual dimensions
selected at will


