
160
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

P4

P5

P0

P1

P2

P3

P4

P5

P2
P1
P0

P3

Time

(b) Perfect load balancing

(a) Imperfect load balancing leading

t

Figure 7.1Load balancing.

to increased execution time

Processors

Processors

Load Balancing and Termination 
Detection

Load balancing – used to distribute computations fairly across processors in order to obtain
the highest possible execution speed.

Termination detection – detecting when a computation has been completed. More difficult
when the computaion is distributed.

161
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Static Load Balancing 

Before the execution of any process

Some potential static load-balancing techniques:

•Round robin algorithm — passes out tasks in sequential order of processes coming
back to the first when all processes have been given a task

•Randomized algorithms — selects processes at random to take tasks

•Recursive bisection — recursively divides the problem into subproblems of equal
computational effort while minimizing message passing

•Simulated annealing — an optimization technique 

•Genetic algorithm — another optimization technique, described in Chapter 12

Figure 7.1 could also be viewed as a form of bin packing (that is, placing objects into boxes
to reduce the number of boxes).

In general, computationally intractable problem, so-called NP-complete.

NP stands for “nondeterministic polynomial”and means there is probably no polynomial-
time algorithm for solving the problem. Hence, often heuristics are used to select proces-
sors for processes. 

Several fundamental flaws with static load balancing even if a mathematical solution exists:

Very difficult to estimate accurately the execution times of various parts of a program
without actually executing the parts.

Communication delays that vary under different circumstances

Some problems have an indeterminate number of steps to reach their solution.



162
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Dynamic Load Balancing 

During the execution of the processes. 

All previous factors are taken into account by making the division of load dependent upon
the execution of the parts as they are being executed.

Does incur an additional overhead during execution, but it is much more effective than
static load balancing

Processes and Processors

Processes are mapped onto processors.

The computation will be divided into work or tasks to be performed, and processes perform
these tasks.

With this terminology, a single process operates upon tasks.

There needs to be at least as many tasks as processors and preferably many more tasks than
processors.

Since our objective is to keep the processors busy, we are interested in the activity of the
processors.

However, we often map a single process onto each processor, so we will use the terms
process and processor somewhat interchangeably.

163
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Dynamic Load Balancing 

Tasks are allocated to processors during the execution of the program.

Dynamic load balancing can be classified as one of the following:

•Centralized 

•Decentralized

Centralized dynamic load balancing

Tasks are handed out from a centralized location. 
A clear master-slave structure exists.

Decentralized dynamic load balancing

Tasks are passed between arbitrary processes.

A collection of worker processes operate upon the problem and interact among them-
selves, finally reporting to a single process.

A worker process may receive tasks from other worker processes and may send tasks
to other worker processes (to complete or pass on at their discretion).



164
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Queue
Work pool

Slave “worker” processes

Master
process

Figure 7.2Centralized work pool.

Tasks

Request task

Send task

(and possibly
submit new tasks)

Centralized Dynamic Load Balancing

Master process(or) holds the collection of tasks to be performed.

Tasks are sent to the slave processes. When a slave process completes one task, it requests
another task from the master process. 

Terms used : work pool, replicated worker, processor farm.

165
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Termination

Stopping the computation when the solution has been reached.

For a computation in which tasks are taken from a task queue, the computation terminates
when both of the following are satisfied:

•The task queue is empty

•Every process has made a request for another task without any new tasks being
generated

Notice that it is not sufficient to terminate when the task queue is empty if one or more
processes are still running because a running process may provide new tasks for the task
queue.

(Those problems that do not generate new tasks, such as the Mandelbrot calculation, would
terminate when the task queue is empty and all slaves have finished.)

In some applications, a slave may detect the program termination condition by some local
termination condition, such as finding the item in a search algorithm.

In that case, the slave process would send a termination message to the master. Then the
master would close down all the other slave processes.

In some applications, each slave process must reach a specific local termination condition,
like convergence on its local solutions.

In this case, the master must receive termination messages from all the slaves.



166
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Process M0Process Mn−1

Master, Pmaster

Slaves

Initial tasks

Figure 7.3A distributed work pool.

Decentralized Dynamic Load Balancing

Distributed Work Pool

167
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Process

Requests/tasks

Process
Process

Process

Figure 7.4Decentralized work pool.

Fully Distributed Work Pool

Processes to execute tasks from each other



168
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Task Transfer Mechanisms

Receiver-Initiated Method

Aprocess requests tasks from other processes it selects.

Typically, a process would request tasks from other processes when it has few or no tasks
to perform.

Method has been shown to work well at high system load. 

Sender-Initiated Method

Aprocess sends tasks to other processes it selects.

Typically, in this method, a process with a heavy load passes out some of its tasks to others
that are willing to accept them.

Method has been shown to work well for light overall system loads.

Another option is to have a mixture of both methods.

Unfortunately, it can be expensive to determine process loads.

In very heavy system loads, load balancing can also be difficult to achieve because of the
lack of available processes.

169
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 7.5Decentralized selection algorithm requesting tasks between slaves.

Requests
Slave Pi

Local
selection
algorithm

Requests
Slave Pj

Local
selection
algorithm

Process Selection

Algorithms for selecting a process:

Round robin algorithm – process Pi requests tasks from process Px, where x is given by a
counter that is incremented after each request, using modulo n arithmetic (n processes), ex-
cluding x = i.
.

Random polling algorithm – process Pi requests tasks from process Px, where x is a number
that is selected randomly between 0 and n − 1 (excluding i).



170
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Master
process

P1P2P3Pn−1

P0

Figure 7.6 Load balancing using a pipeline structure.

Load Balancing Using a Line Structure

The master process (P0 in Figure 7.6) feeds the queue with tasks at one end, and the tasks
are shifted down the queue.

When a “worker” process, Pi (1 ≤ i < n), detects a task at its input from the queue and the
process is idle, it takes the task from the queue.

Then the tasks to the left shuffle down the queue so that the space held by the task is filled.
A new task is inserted into the left side end of the queue.

Eventually, all processes will have a task and the queue is filled with new tasks.

High- priority or larger tasks could be placed in the queue first. 

171
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

If buffer empty,
make request

Receive task
from request

If free,
request
task

Receive
task from
request

If buffer full,
send task

Request for task

Figure 7.7Using a communication process in line load balancing.

Ptask

Pcomm

Shifting Actions

could be orchestrated by using messages between adjacent processes.

Perhaps the most elegant method is to have two processes running on each processor:

•For left and right communication
•For the current task



172
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Code Using Time Sharing Between 
Communication and Computation

Master process (P0)

for (i = 0; i < no_tasks; i++) {

recv(P1, request_tag);/* request for task */

send(&task, Pi, task_tag);/* send tasks into queue */

}

recv(P1, request_tag);/* request for task */

send(&empty, Pi, task_tag);/* end of tasks */

Process Pi (1 < i < n)

if (buffer == empty) {

send(Pi-1, request_tag);/* request new task */

recv(&buffer, Pi-1, task_tag);/* task from left proc */

}

if ((buffer == full) && (!busy)) {/* get next task */

task = buffer;/* get task*/

buffer = empty;/* set buffer empty */

busy = TRUE;/* set process busy */

}

nrecv(Pi+1, request_tag, request); /* check message from right */

if (request && (buffer == full)) {

send(&buffer, Pi+1);/* shift task forward */

buffer = empty;

}

if (busy) {/* continue on current task */

Do some work on task.

If task finished, set busy to false.

}

In this code, a combined sendrecv() might be applied if available rather than a send()/
recv() pair.

A nonblocking nrecv() is necessary to check for a request being received from the right.

In our pseudocode, we have simply added the parameter request, which is set to TRUE if
a message has been received.

173
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Nonblocking Receive Routines

PVM

Nonblocking receive, pvm_nrecv(), returned a value that is zero if no message has been
received.

A probe routine, pvm_probe(), could be used to check whether a message has been received
without actual reading the message

Subsequently, a normal recv() routine is needed to accept and unpack the message.

MPI

Nonblocking receive, MPI_Irecv(), returns a request “handle,” which is used in subsequent
completion routines to wait for the message or to establish whether the message has
actually been received at that point (MPI_Wait() and MPI_Test(), respectively).

In effect, the nonblocking receive, MPI_Irecv(), posts a request for message and returns
immediately.



174
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

P0

P1

P3

P2

P6 P4 P5

Figure 7.8Load balancing using a tree.

Task
when
requested

Tree Structure

Extension of pipeline approach to a tree.

Tasks are passed from a node into one of the two nodes below it when a node buffer be-
comes empty.

175
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Distributed Termination Detection Algorithms

Termination Conditions

In general, distributed termination at time t requires the following conditions to be satisfied:

•Application-specific local termination conditions exist throughout the collection of
processes, at time t. 

•There are no messages in transit between processes at time t.

Subtle difference between these termination conditions and those given for a centralized
load-balancing system is having to take into account messages in transit.

The second condition is necessary for the distributed termination system because a message
in transit might restart a terminated process.

One could imagine a process reaching its local termination condition and terminating while
a message is being sent to it from another process.

Second condition is more difficult to recognize. The time that it takes for messages to travel
between processes will not be known in advance.

One could conceivably wait a long enough period to allow any message in transit to arrive. 

This approach would not be favored and would not permit portable code on different archi-
tectures.



176
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Inactive

Active

Parent

First task

Other processes

Final
acknowledgment

Process

Task
Acknowledgment

Figure 7.9Termination using message 
acknowledgments.

Using Acknowledgment Messages

Each process is in one of two states:

1.Inactive

2.Active

Initially, without any task to perform, the process is in the inactive state. Upon receiving a
task from a process, it changes to the active state.

The process that sent the task to make it enter the active state becomes its “parent.”

If the process passes on a task to an inactive process, it similarly becomes the parent of this
process, thus creating a tree of processes, each with a unique parent.

On every occasion when a process sends a task to another process, it expects an acknowl-
edgment message from that process.

On every occasion when it receives a task from a process, it immediately sends an acknowl-
edgment message, except if the process it receives the task from is its parent process.

It only sends an acknowledgment message to its parent when it is ready to become inactive.
It becomes inactive when

•Its local termination condition exists (all tasks are completed).

•It has transmitted all its acknowledgments for tasks it has received.

•It has received all its acknowledgments for tasks it has sent out.

The last condition means that a process must become inactive before its parent process.
When the first process becomes idle, the computation can terminate.

177
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

P0P2 P1Pn−1

Token passed to next processor

Figure 7.10Ring termination detection algorithm.

when reached local termination condition

Ring Termination Algorithms

Single-pass ring termination algorithm

1.When P0 has terminated, it generates a token that is passed to P1. 

2.When Pi (1 ≤ i < n) receives the token and has already terminated, it passes the token
onward to Pi+1. Otherwise, it waits for its local termination condition and then passes
the token onward. Pn−1 passes the token to P0. 

3.When P0 receives a token, it knows that all processes in the ring have terminated. A
message can then be sent to all processes informing them of global termination, if
necessary.

The algorithm assumes that a process cannot be reactivated after reaching its local termina-
tion condition.

This does not apply to work pool problems in which a process can pass a new task to an idle
process



178
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Terminated

Token

AND

Figure 7.11Process algorithm for local 
termination.

179
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

P0Pi PjPn−1

Figure 7.12Passing task to previous processes.

Task

Dual-Pass Ring Termination Algorithm 

Can handle processes being reactivated but requires two passes around the ring. The reason
for reactivation is for process Pi, to pass a task to Pj where j < i and after a token has passed
Pj,. If this occurs, the token must recirculate through the ring a second time.

To differentiate these circumstances, tokens are colored white or black.

Processes are also colored white or black.

Receiving a black token means that global termination may not have occurred and the token
must be recirculated around the ring again.

The algorithm is as follows, again starting at P0:

1.P0 becomes white when it has terminated and generates a white token to P1.

2.The token is passed through the ring from one process to the next when each process
has terminated, but the color of the token may be changed. If Pi passes a task to Pj
where j < i (that is, before this process in the ring), it becomes a black process;
otherwise it is a white process. A black process will color a token black and pass it
on. A white process will pass on the token in its original color (either black or white).
After Pi has passed on a token, it becomes a white process. Pn−1 passes the token to
P0. 

3.When P0 receives a black token, it passes on a white token; if it receives a white
token, all processes have terminated.

Notice that in both ring algorithms, P0 becomes the central point for global termination.

Also, it is assumed that an acknowledge signal is generated to each request.



180
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Terminated

AND

Terminated

ANDTerminated

AND

Figure 7.13Tree termination.

Tree Algorithm

The local actions described in Figure 7.11 can be applied to various interconnection struc-
tures, notably a tree structure, to indicate that processes up to that point have terminated.

181
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Fixed Energy Distributed Termination 
Algorithm

Uses the notation of a fixed quantity within the system, colorfully termed “energy.” 

This energy is similar to a token but has a numeric value.

The system starts with all the energy being held by one process, the master process.

The master process passes out portions of the energy with the tasks to processes making
requests for tasks.

Similarly, if these processes receive requests for tasks, the energy is divided further and
passed to these processes.

When a process becomes idle, it passes the energy it holds back before requesting a new
task.

This energy could be passed directly back to the master process or to the process giving it
the original task.

A process will not hand back its energy until all the energy it handed out is returned and
combined to the total energy held.

When all the energy is returned to the root and the root becomes idle, all the processes must
be idle and the computation can terminate.

A significant disadvantage of the fixed energy method is that dividing the energy will be of
finite precision and adding the partial energies may not equate to the original energy if
floating point arithmetic is used. In addition, one can only divide the energy so far before it
becomes essentially zero.



182
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Shortest Path Problem

Finding the shortest distance between two points on a graph.

It can be stated as follows:

Given a set of interconnected nodes where the links between the nodes are marked
with “weights,” find the path from one specific node to another specific node that has
the smallest accumulated weights.

The interconnected nodes can be described by a graph.

In graph terminology, the nodes are called vertices, and the links are called edges.

If the edges have implied directions (that is, an edge can only be traversed in one direction,
the graph is a directed graph.

The graph itself could be used to find the solution to many different problems; for example,

1.The shortest distance between two towns or other points on a map, where the weights
represent distance

2.The quickest route to travel, where the weights represent time (the quickest route may
not be the shortest route if different modes of travel are available; for example, flying
to certain towns) 

3.The least expensive way to travel by air, where the weights represent the cost of the
flights between cities (the vertices)

4.The best way to climb a mountain given a terrain map with contours

5.The best route through a computer network for minimum message delay (the vertices
represent computers, and the weights represent the delay between two computers)

6.The most efficient manufacturing system, where the weights represent hours of work

“The best way to climb a mountain” will be used as an example.

183
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Base camp

Summit

Possible intermediate camps

B

C

A

Figure 7.14Climbing a mountain.

F

E

D

Example: The Best Way to Climb a Mountain



184
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 7.15Graph of mountain climb.

ABC

D

E

F

10

13

17

51

8

24

9

14

Weights in graph indicate the amount of effort that would be expended in traversing the route
between two connected camp sites.

The effort in one direction may be different from the effort in the opposite direction (downhill
instead of uphill!). (directed graph)

185
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Graph Representation

Two basic ways that a graph can be represented in a program:

1.Adjacency matrix — a two-dimensional array, a, in which a[i][j] holds the weight
associated with the edge between vertex i and vertex j if one exists

2. Adjacency list — for each vertex, a list of vertices directly connected to the vertex by
an edge and the corresponding weights associated with the edges

Adjacency matrix used for dense graphs. The adjacency list is used for sparse graphs.

The difference is based upon space (storage) requirements.

Adjacency matrix has Ο(n2) space requirement and adjacency list has an Ο(nv) space
requirement, where there are v edges from each vertex and n vertices in all. 
Accessing the adjacency list is slower than accessing the adjacency matrix, as it
requires the linked list to be traversed sequentially, which potentially requires v steps.



186
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

A

B

C

D

E

F

ABCDEF

∞

∞

∞

∞

∞

∞

10

13

17

51 824

9

∞

∞

∞∞∞∞∞

∞

∞∞

∞ ∞

∞

∞

∞

∞

∞∞∞∞

∞

∞ 14
Source

Destination

A

B

C

D

E

F

Source

WeightNULL

10

8132451 CDEF

14 D

9 E

17 F

(a) Adjacency matrix

(b) Adjacency list

Figure 7.16Representing a graph.

B

187
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Searching a Graph

Two well-known single-source shortest-path algorithms:

•Moore’s single-source shortest-path algorithm (Moore, 1957)

•Dijkstra’s single-source shortest-path algorithm (Dijkstra, 1959)

which are similar.

Moore’s algorithm is chosen because it is more amenable to parallel implementation
although it may do more work.

The weights must all be positive values for the algorithm to work. (Other algorithms exist
that will work with both positive and negative weights.)



188
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Vertex i

Vertex j

wi,j

dj

di

Figure 7.17Moore’s shortest-path algo-
rithm.

Moore’s Algorithm

Starting with the source vertex, the basic algorithm implemented when vertex i is being
considered as follows.

Find the distance to vertex j through vertex i and compare with the current minimum
distance to vertex j. Change the minimum distance if the distance through vertex i is shorter.

In mathematical notation, if di is the current minimum distance from the source vertex to
vertex i and wi,j is the weight of the edge from vertex i to vertex j, we have

dj = min(dj, di + wi,j)

189
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Date Structures and Code

A first-in-first-out vertex queue is created and holds a list of vertices to examine.

Vertices are considered only when they are in the vertex queue.

Initially, only the source vertex is in the queue.

Another structure is needed to hold the current shortest distance from the source vertex to
each of the other vertices.

Suppose there are n vertices, and vertex 0 is the source vertex.

The current shortest distance from the source vertex to vertex i will be stored in the array
dist[i] (1 ≤ i < n).

At first, none of these distances will be known and the array elements are initialized to
infinity.

Suppose w[i][j] holds the weight of the edge from vertex i and vertex j (infinity if no
edge). The code could be of the form

newdist_j = dist[i] + w[i][j];

if (newdist_j < dist[j]) dist[j] = newdist_j;

When a shorter distance is found to vertex j, vertex j is added to the queue (if not already

in the queue), which will cause vertex j to be examined again. (This is an important aspect

of this algorithm, which is not present in Dijkstra’s algorithm.)



190
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Stages in Searching a Graph

To see how this algorithm proceeds from the source vertex, let us follow the steps using our
mountain climbing graph as the example.

The initial values of the two key data structures are

After examining A to B:

After examining B to F, E, D, and C::

After examining E to F

After examining D to E:

Vertices to consider

vertex

Current minimum distances

dist[] vertex_queue

A0∞ ∞∞ ∞ ∞
ABCDEF

Vertices to consider

vertex

Current minimum distances

dist[] vertex_queue

B0∞ 10∞ ∞ ∞
ABCDEF

Vertices to consider

vertex

Current minimum distances

dist[] vertex_queue

ED061 10 C34 23 18

ABCDEF

Vertices to consider

vertex

Current minimum distances

dist[] vertex_queue

DC051 1034 23 18

ABCDEF

Vertices to consider

vertex

Current minimum distances

dist[] vertex_queue

CE050 1032 23 18

ABCDEF

191
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

After examining C to D: No changes.

After examining E (again) to F :

There are no more vertices to consider.

We have the minimum distance from vertex A to each of the other vertices, including the
destination vertex, F.

Usually, the actual path is also required in addition to the distance. Then the path needs to
be stored as the distances are recorded. The path in our case is A → B → D → E → F.

Vertices to consider

vertex

Current minimum distances

dist[] vertex_queue

049 1032 23 18

ABCDEF



192
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Sequential Code

The specific details of maintaining the vertex queue are omitted. Let next_vertex() return
the next vertex from the vertex queue or no_vertex if none.

We will assume that an adjacency matrix is used, named w[][], which is accessed sequen-
tially to find the next edge.

The sequential code could then be of the form

while ((i = next_vertex()) != no_vertex)/* while a vertex */

for (j = 1; j < n; j++)/* get next edge */

if (w[i][j] != infinity) {/* if an edge */

newdist_j = dist[i] + w[i][j];

if (newdist_j < dist[j]) {

dist[j] = newdist_j;

append_queue(j);/* vertex to queue if not there */

}

}/* no more vertices to consider */

193
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Parallel Implementations

Centralized Work Pool

Centralized work pool holds the vertex queue, vertex_queue[] as tasks. 

Each slave takes vertices from the vertex queue and returns new vertices.

Since the structure holding the graph weights is fixed, this structure could be copied into
each slave. We will assume a copied adjacency matrix.

Distance array, dist[], is held centrally and simply copied with the vertex in its entirety. 

Master

while (vertex_queue() != empty) {

recv(PANY, source = Pi);/* request task from slave */

v = get_vertex_queue();

send(&v, Pi);/* send next vertex and */

send(&dist, &n, Pi);/* current dist array */

.

recv(&j, &dist[j], PANY, source = Pi);/* new distance */

append_queue(j, dist[j]);/* append vertex to queue */

/* and update distance array */

};

recv(PANY, source = Pi);/* request task from slave */

send(Pi, termination_tag);/* termination message*/

Slave (process i)

send(Pmaster);/* send request for task */

recv(&v, Pmaster, tag);/* get vertex number */

if (tag != termination_tag) {

recv(&dist, &n, Pmaster);/* and dist array */

for (j = 1; j < n; j++)/* get next edge */

if (w[v][j] != infinity) {/* if an edge */

newdist_j = dist[v] + w[v][j];

if (newdist_j < dist[j]) {

dist[j] = newdist_j;

send(&j, &dist[j], Pmaster);/* add vertex to queue */

}/* send updated distance */

}

}



194
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Decentralized Work Pool

A convenient approach is to assign slave process i to search around vertex i only and for it
to have the vertex queue entry for vertex i if this exists in the queue.

The array dist[] will also be distributed among the processes so that process i maintains
the current minimum distance to vertex i.

Process i also stores an adjacency matrix/list for vertex i, for the purpose of identifying the
edges from vertex i. 

Search Algorithm

The search will be activated by a coordinating process loading the source vertex into the
appropriate process.

In our case, vertex A is the first vertex to search. The process assigned to vertex A is acti-
vated.

This process will immediately begin searching around its vertex to find distances to con-
nected vertices.

The distance to process j will be sent to process j for it to compare with its currently stored
value and replace if the currently stored value is larger.

In this fashion, all minimum distances will be updated during the search.

If the contents of d[i] changes, process i will be reactivated to search again.

195
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Start at

w[]

distProcess C

Process A

Master process

Figure 7.18Distributed graph search.

Vertex

source
vertex

w[]

dist

Vertex

dist

Process B

New
distance

New
distance

w[] Vertex

Other processes



196
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

A code segment for the slave processes might take the form

Slave (process i)

recv(newdist, PANY);

if (newdist < dist) {

dist = newdist;

vertex_queue = TRUE;/* add to queue */

} else vertex_queue == FALSE;

if (vertex_queue == TRUE)/* start searching around vertex */

for (j = 1; j < n; j++)/* get next edge */

if (w[j] != infinity) {

d = dist + w[j];

send(&d, Pj);/* send distance to proc j */

}

This could certainly be simplified to:

Slave (process i)

recv(newdist, PANY);

if (newdist < dist)

dist = newdist;/* start searching around vertex */

for (j = 1; j < n; j++)/* get next edge */

if (w[j] != infinity) {

d = dist + w[j];

send(&d, Pj);/* send distance to proc j */

}

A mechanism is necessary to repeat the actions and terminate when all processes are idle. 

The mechanism must cope with messages in transit.

The simplest solution is to use synchronous message passing, in which a process cannot
proceed until the destination has received the message. 

Note that a process is only active after its vertex is placed on the queue, and it is possible
for many processes to be inactive, leading to an inefficient solution. 

The method is also impractical for a large graph if one vertex is allocated to each processor.
In that case, a group of vertices could be allocated to each processor. 

197
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

PROBLEMS

Scientific/Numerical

7-1.One approach for assigning processes to processors is to make the assignment random using a
random number generator. Investigate this technique by applying it to a parallel program that
adds together a sequence of numbers.

7-2.Write a parallel program that will implement the load-balancing technique using a pipeline
structure described in Section 7.2.3 for any arbitrary set of independent arithmetic tasks.

7-3.The traveling salesperson problem is a classical computer science problem (though it might
also be regarded as a real life problem). Starting at one city, the objective is to visit each of n
cities exactly once and return to the first city on a route that minimizes the distance traveled.
The n cities can be regarded as variously connected. The connections can be described by a
weighted graph. Write a parallel program to solve the traveling salesman problem with real
data obtained from a map to include 25 major cities.

7-4.Implement Moore’s algorithm using the load-balancing line structure described in Section
7.2.3.

7-5.As noted in the text, the decentralized work pool approach described in Section 7.4 for
searching a graph is inefficient in that processes are only active after their vertex is placed on
the queue. Develop a more efficient work pool approach that keeps processes more active.

7-6.Write a loading-balancing program using Moore’s algorithm and a load-balancing program
using Dijkstra’s algorithm for searching a graph. Compare the performance of each algorithm
and make conclusions.



198
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Real Life

7-7.Single-source shortest-path algorithms can be used to find the shortest route for messages in a
multicomputer interconnection network, such as a mesh or hypercube network or any intercon-
nection network one would like to devise. Write a parallel program that will find all the shortest
routes through a d-dimensional hypercube, where d is input.

7-8.Modify the program in Problem 7-7 to handle an incomplete hypercube. An incomplete
hypercube is one with one of more links removed. One form of incomplete hypercube consists
of two interconnected complete hypercubes of size 2n and 2k (1 ≤ k ≤ n). More details can be
found in Tzeng and Chen (1994).

7-9.You have been commissioned to develop a challenging maze to be constructed at a stately
home. The maze is to be laid out on a grid such as shown in Figure 7.19. Develop a parallel
program that will find the positions of the hedges that result in the longest time in the maze if
one uses the maze algorithm: “Keep to the path where there is a hedge or wall on the left” as
is illustrated in Figure 7.19, which is guaranteed to find the exit eventually (Berman and Paul,
1997).

Entrance

Exit

Search path

Figure 7.19Sample maze for Problem 7-9.

Hedge

199
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

7-10.A building has a number of interconnected rooms with a pot of gold in one, as illustrated in
Figure 7.20. Draw a graph describing the plan of rooms where each vertex is a room. Doors
connecting rooms are shown as vertices between the rooms, as illustrated in Figure 7.21. Write
a program that will find the path from the outside door to the chamber holding the gold. Notice
that edges are bidirectional, and cycles may exist in the graph.

Gold

Entrance

Figure 7.20Plan of rooms for Problem 7-10.

Door

Room A

Room B

Figure 7.21Graph representation for 
Problem 7-10.


