IBM SP2 Overview

- Distributed-memory MIMD multicomputer
- Scalable POWERparallel 1 (SP1)
 - Development started February 1992, delivered to users in April 1993
- Scalable POWERparallel 2 (SP2)
 - 120-node systems delivered 1994
 - 4–128 nodes: RS/6000 workstation with POWER2 processor, 66.7 MHz, 267 MFLOPS
 - POWER2 used in RS 6000 workstations, gives compatibility with existing software
 - 1997 version (NUMA):
 - High Node (SMP node, 16 nodes max): 2–8 PowerPC 604, 112 MHz, 224 MFLOPS, 64MB–2GB memory
 - Wide Node (128 nodes max): 1 P2SC (POWER2 Super Chip, 8 chips on one chip), 135 MHz, 640 MFLOPS, 64MB–2GB memory

IBM SP2 Overview (cont.)

- RS/6000 as system console
- SP2 runs various combinations of serial, parallel, interactive, and batch jobs
 - Partition between types can be changed
 - High nodes interactive nodes for code development and job submission
 - Thin nodes compute nodes
 - Wide nodes configured as servers, with extra memory, storage devices, etc.
- A system "frame" contains 16 thin processor or 8 wide processor nodes
 - Includes redundant power supplies, nodes are hot swappable within frame
 - Includes a high-performance switch for low-latency, high-bandwidth communication

IBM SP2 @ Oak Ridge National Labs

Fall 2001, Lecture MIMD2

IBM SP2 Processors

POWER2 processor

2

- Various versions from 20 to 62.5 MHz
- RISC processor, load-store architecture
 - Floating point multiple & add instruction with latency of 2 cycles, pipelined for initiation of new one each cycle
 - Conditional branch to decrement and test a "count register" (without fixed-point unit involvement), good for loop closings
- POWER 2 processor chip set
 - 8 semi-custom chips: Instruction Cache Unit, four Data Cache Units, Fixed-Point Unit (FXU), Floating-Point Unit (FPU), and Storage Control Unit
 - 2 execution units per FXU and FPU
 - Can execute 6 instructions per cycle: 2 FXU, 2 FPU, branch, condition register
 - Options: 4-word memory bus with 128 KB data cache, or 8-word with 256 KB

IBM SP2 Interconnection Network

General

- Multistage High Performance Switch (HPS) network, with extra stages added to keep bw to each processor constant
- Message delivery
 - PIO for short messages with low latency and minimal message overhead
 - DMA for long messages
- Multi-user support hardware protection between partitions and users, guaranteed fairness of message delivery
- Routing

5

- Packet switched = each packet may take a different route
- Cut-through = if output is free, starts sending without buffering first
- Wormhole routing = buffer on subpacket basis if buffering is necessary

nCUBE Overview

- Distributed-memory MIMD multicomputer (with hardware to make it look like shared-memory multiprocessor)
- History
 - nCUBE 1 1985
 - nCUBE 2 1989
 - 34 GFLOPS, scalable
 - ?-8192 processors
 - nCUBE 3 1995
 - 1–6.5 TFLOPS, 65 TB memory, 24 TB/s hypercube interconnect, 1024 3 GB/s I/O channels, scalable
 - 8–65,536 processors
- Operation
 - Can be partitioned into "subcubes"
 - Programming paradigms: SPMD, intersubcube processing, client/server

IBM SP2 AIX Parallel Environment

- Parallel Operating Environment based on AIX, includes Desktop interface
 - Partition Manager to allocate nodes, copy tasks to nodes, invoke tasks, etc.
 - Program Marker Array (online) squares graphically represent program tasks
 - System Status Array (offline) squares show percent of CPU utilization
- Parallel Message Passing Library
- Visualization Tool view online and offline performance
 - Group of displays for communications characteristics or performance (connectivity graph, inter-processor communication, message status, etc.)
- Parallel Debugger

Fall 2001, Lecture MIMD2

nCUBE 3 Processor

- 0.6 µm, 3-layer CMOS, 2.7 million transistors, 50 MHz, 16 KB data cache, 16 KB instruction cache, 100 MFLOPS
 - Argument against off-the-shelf processor: shared memory, vector floating-point units, aggressive caches are necessary in workstation market but superfluous here
- ALU, FPU, virtual memory management unit, caches, SDRAM controller, 18-port message router, and 16 DMA channels
 - ALU for integer operations, FPU for floating point operations, both 64 bit
 - Most integer operations execute in one 20ns clock cycle
 - FPU can complete two single- or doubleprecision operations in one clock cycle
 - Virtual memory pages can be marked as "non-resident", the system will generate messages to transfer page to local node

8

Fall 2001, Lecture MIMD2

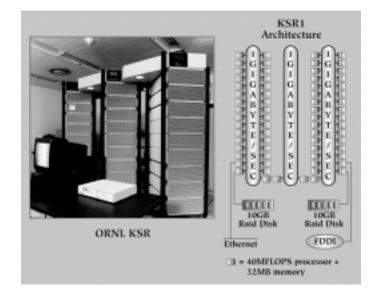
nCUBE 3 Interconnect

- Hypercube interconnect
 - Added hypercube dimension allows for double the processors, but processors can be added in increments of 8
 - Wormhole routing + adaptive routing around blocked or faulty nodes
- ParaChannel I/O array
 - Separate network of nCUBE processors for load distribution and I/O sharing
 - 8 computational nodes (nCUBE processors plus local memory) connect directly to one ParaChannel node, and can also communicate with those nodes via the regular hypercube network
 - ParaChannel nodes can connect to RAID mass storage, SCSI disks, etc.
 - One I/O array can be connected to more than 400 disks

Kendall Square Research KSR1 Overview

- COMA distributed-memory MIMD multicomputer (with hardware to make it look like shared-memory multiprocessor)
- 6 years in development, 36 variations in 1992 (8 cells for \$500k, 1088 for \$30m)
 - 8 cells: 320 MFLOPS, 256 MB memory, 210 GB disk, 210 MB/s I/O
 - 1088 cells: 43 GFLOPS, 34 GB memory, 15 TB disk, 15 GB/s I/O
- Each system includes:
 - Processing Modules, each containing up to 32 APRD Cells including 1GB of ALLCACHE memory
 - Disk Modules, each containing 10 GB
 - I/O adapters
 - Power Modules, with battery backup

nCUBE 3 Software


- Parallel Software Environment
 - nCX microkernel OS runs on all compute nodes and I/O nodes
 - UNIX functionality
 - Programming languages including FORTRAN 90, C, C++, as well as HPF, Parallel Prolog, and Data Parallel C

MediaCUBE Overview

- Emphasized on their web page; for delivery of interactive video to client devices over a network (from LAN-based training to video-on-demand to homes)
 - MediaCUBE 30 = 270 1.5 Mbps data streams, 750 hours of content
 - MediaCUBE 3000 = 20,000 & 55,000

Fall 2001, Lecture MIMD2

KSR1 @ Oak Ridge National Labs

Fall 2001, Lecture MIMD2

10

12

Kendall Square Research KSR1 Processor Cells

- Each APRD (ALLCACHE Processor, Router, and Directory) Cell contains:
 - 64-bit Floating Point Unit, 64-bit Integer Processing Unit
 - Cell Execution Unit for address gen.
 - 4 Cell Interconnection Units, External I/O Unit
 - 4 Cache Control Units
 - 32 MB of Local Cache, 512 KB of subcache
- Custom 64-bit processor: 1.2 µm, each up to 450,000 transistors, packaged in 8x13x1 printed circuit board
 - 20 MHz clock
 - Can execute 2 instructions per cycle

Kendall Square Research KSR1 ALLCACHE System

- The ALLCACHE system moves an address set requested by a processor to the Local Cache on that processor
 - Provides the illusion of a single sequentially-consistent shared memory
- Memory space consists of all the 32 KB local caches
 - No permanent location for an "address"
 - Addresses are distributed and based on processor need and usage patterns
 - Each processor is attached to a Search Engine, which finds addresses and their contents and moves them to the local cache, while maintaining cache coherence throughout the system
 - 2 levels of search groups for scalability

Fall 2001, Lecture MIMD2

14

Fall 2001, Lecture MIMD2

Kendall Square Research KSR1 Programming Environment

- KSR OS = enhanced OSF/1 UNIX
 - Scalable, supports multiple computing modes including batch, interactive, OLTP, and database management and inquiry
- Programming languages
 - FORTRAN with automatic parallelization
 - C

13

 PRESTO parallel runtime system that dynamically adjusts to number of available processors and size of the current problem