
MultiC Language

1

The MultiC Language

• MultiC is primary language on the WaveTracer and
the Zephyr SIMD computers.

• The Zephyr is a second generation WaveTracer, but
was never commercially available.

• Both MultiC and a parallel language designed for
the MasPar are similar to an earlier parallel
language called C*.

– C* was designed by Guy Steele for the
Connection Machine.

– All are data parallel and extensions of the C
language

• An assembler was also written for the WaveTracer
(and probably the Zephyr).

– It was intended for use only by company
technicians.

– Information about assembler were released to
WaveTracer customers on a “need to know”
basis.

– No manual was written but some details were
recorded in a short writeup/report.

– Professor Potter has a reasonable amount of
information about assembler to use in putting
the ASC language on the WaveTracer

MultiC Language

2

• MultiC is an extension to ANSI C, as documented
by the following book:

– The C Programming Language, Second Edition,
1988, Kernighan & Richie.

• The manual for the MultiC language is a spiral
bound book titled “The MultiC Programming
Language” by WaveTracer, 1991.

• The WaveTracer computer is called a Data
Transport Computer (DTC) in manual

– a large amount of data can be moved in parallel
using interprocessor communications.

• Primary expected uses for WaveTracer were
scientific modeling and scientific computation

– Accoustic waves

– heat flow

– fluid flow

– medical imaging

– molecular modeling

– neural networks

• The 3-D applications are supported by a 3D mesh
on the WaveTracer

– Done by sampling a finite set of points (nodes)
in space.

MultiC Language

3

WaveTracer Architecture Background

• Architecture for Zephyr is fairly similar

– Exceptions will be mentioned whenever known

• Each board has 4096 bit-serial processors, which
can be connected in any of the following ways:

– 16x16x16 cube in 3D space

– 64x64 square in 2D space

– 4096 array in 1D space

• The 3D architecture is native on the WT and the
other networks are supported in hardware using
primarily the 3D hardware

– The Zephyr probably has a 2D network and
only simulates the more expensive 3D network
using system software.

• WaveTracer was available in 1, 2, or 4 boards,
arranged as follows:

– 2 boards were arranged as a 16x32x16 cube

• one cube stacked on the top of another cube

• 8192 processors overall

MultiC Language

4

WaveTracer Architecture (Cont)

– Four boards are arranged as a 32x32x16 cube

• 16,384 procesors

• Arranged as two columns of stacked cubes

• Computer supports automatic creation of virtual
processors and network connections to connect
these virtual processors.

– If each processor supports k nodes, this slows
down execution speed by a factor of k

• Each processor performs each operation k
times.

• Limited by the amount of memory required
for each virtual node

• In practice, slowdown is usually less than k

• The set of virtual processors supported by a
physical processor is called its territory.

MultiC Language

5

Specifiers for MultiC Variables

• Any datatype in C except pointers can be declared
multi

• This replicates the data object for each processor, to
produce a 1,2, or 3 dimensional data object

• In a parallel execution, all multi objects must have
the same dimension.

• The multi declaration follows the same format as
ANSC C, e.g

multi int imag, buffer;
• The uni operation is used to declare a scalar

variable
– Is the default and need not be shown.
– The following are equivalent:

uni int ptr;
int ptr;

• Bit Length Variables
• can be of type uni or multi

– Allows user to save memory
– All operations can be performed on these bit-

length values
– Example: A 2 color image can be declared by

multi unsigned int image :1;
and an 8 color image by

multi unsigned int picture:3;

MultiC Language

6

Some Control Flow Commands

• For uni type data structures, control flow in MultiC
is identical to that in ANSI C.

• IF-ELSE Statement

– As in ASC, both the IF and ELSE portions of
the code is executed.

– As with ASC, the IF is a mask-setting operation
rather than a branching command

– FORMAT: Same as for C

– WARNING: Both sets of statements are
executed.

• Even if no responders are active in one part,
the sequential commands in that part are
executed.

– Differs from ASC here

– Example: count := count + 1;

• WHILE statement

– The format used is

while(expression)

– The repetition continues as long as expression
is satisfied by one or more responders.

– While does not change scope (i.e., the mask).

– Commands are executed by all processors that
were active upon initially reaching the WHILE

MultiC Language

7

Other Commands

• Jump Statements

– goto, return, continue, break

– These commands are in conflict with structured
programming and should be used with restraint.

• Parallel Reduction Operators

*= Accumulative Product

/= Recripocal Accumulative Product

+= Accumulative Sum

-= Negate & then Accumulative Sum

&= Accumulative bitwise AND

|= Accumulative bitwise OR

>?= Accumulative Maximum

<?= Accumulative Minimum

• Each of the above reduction operations return a uni
value and provide a powerful arithmetic operation.

– Each accumulative operation would otherwise
require one or more ANSI C loop constructs.

– Example: If A is a multi data type

largest_value = >?= A

smallest_value = <?= A

MultiC Language

8

• Data Replication

– Example:

multi int A = 0;
-

-

-

A = 2;

– First statement stores 0 in every cell in A field

– Last statement stores 2 in every cell in A field

• Interprocessor Communications

– Operators have the form

[dx; dy; dz]m

– This operator can shift the components of the multi
variable m of all active processors along one or more
coordinate dimensions.

– Example: A = [-1; 2; 1]B

• Causes each active processor to move the data in
its B field to the A field of the processor at the
following location:

– one unit in the negative X direction

– one unit in the positive Y direction

– two units in the positive Z direction

– Coordinate Axes

 Y Z

 O X

MultiC Language

9

– Conventions:

• If value of dz operator is not specified, it is
assumed to be 0

• If the values of dy and dz operators are not
specified, both are assumed to be 0

• Example: [x; y]V is the same as [x; y; 0]V

– Inactive processor actions

• Does not send its data to another processor

• Participates in moving the data from other
processors along.

– Transmission of data occurs in lock step (SIMD
fashion) without conjestion or buffering.

• Coordinate Functions

– Used to return a coordinate for each active
virtual processor.

– Format: multi_x(), multi_y(), and multi_z()

– Example:
If(multi_x() == 0 && multi_y == 2 && multi_z == 1)

u = += A;

• Note that all processors except one at (0,2,1) are
inactive with the body of the IF.

• The accumulated sum of the active components of the
multivariable A is just the value of the component of A
at processor (0,2,1)

• Effect of this example is to store the value in A at
(0,2,1) in the uni variable u.

MultiC Language

10

• If the second command in the example is changed to
A = u;

the effect is to store the contents of the uni variable u
into multi variable A at location (0,2,1).

• (see manual pg 11-13,14 for more details)

• Arrays
– Multi-pointers are not supported.

• Can not have a parallel variable containing a
pointer to each component of the array.

– uni pointers to multi-variables are allowed.
– Array Examples:

int array_1 [10];
int array_2 [5][5];

multi int array_3 [5];
• array_1 is a 1 dimensional standard C array
• array_2 is a 2 dimensional standard C array
• array_3 is a 1-dimensional array of multi variables

• MULTI_PERFORM Command
– Command gives the size of each dimension of

all multi-values prior to calling for a parallel
execution.

– Format:
multi_perform(func, xsize, ysize, zsize)

• Here, “func” is the function being executed.
• “xsize”, “ysize”, “zsize” are positive integers

specifying the DTC network configuration.
• If “zsize” is 1, then multi_perform creates a 2D

grid of size “xsize ¥ ysize”

MultiC Language

11

– multi_perform is normally called within the
main program.
• Usually calls a subroutine that includes all of the

– parallel work
– parallel I/O

– The main program usually includes
– Opening and closing of files
– Some of the scalar I/O
– define and include statements

– When multi_perform is called, it initializes any
extern and static multi objects

– In the previous example, multi_perform calls
func. After func returns, the multi space created
for it becomes undefined.

– The perror function is extended to print error
messages corresponding to errno numbers
resulting from the execution of multiC
extensions.
• Has the following format
if(multi_perform(func,x,y,z)) perror(argv[0]);

• See usage in the examples in Appendix A
• More information on page 11-2 of manual

• Examples in Manual
– Many examples in the manual
– 17 in appendices alone
– Also stored under exname.mc in the MultiC package

• They can be compiled and executed.

MultiC Language

12

The AnyResponder Function

• Code Segment for Tallying Responders
unsigned int short, tall;

multi float height;

load_height; /* assigns values to height */

if(height >= 6)

tall = += (multi int)1;

else

short = += (multi int)1;

printf(“There are %d tall people \n”, tall);

• Comments on Code Segment

– Note that the construct

+= (multi int)1

counts the active PE (i.e., responders).

– This technique avoids setting up a bit field to
use to tally active PEs.

• Instead sets up a temporary multi variable.

– Can be used to see there is at least one
responder at a given step.

• Check to see if resulting sum is positive

– Provides technique to define the AnyResponder
function needed for associative programming

MultiC Language

13

Accessing Components from Multi Variables

• Code from page 11-14 of MultiC manual
#include <multi.h> /* includes multi library */

#include <stdio.h>

#include <stdio.h>

void work (void)

{ uni int a, b, c, u;

multi int n;

/* Code goes here to assign values to n */

/* Code goes here to assign values to a, b, c */

if (mult_x() == a && multi_y() == b

&& multi_z() == c)

 u = += n; /* Assigns value of n at PE(a,b,c) */

}

 int main (int argc, char, *argv[])

{ if(multi_perform(work, 7 , 7, 7))

perror = argv{0};

exit(exit_success);

}

• To place a value of 5 into the selected location, replace the line
“u = +=n” with the line

n = 5;

• The capability to read or place a value in a parallel variable at a
selected position is essential for multiC to execute associative
programs.

MultiC Language

14

The oneof and next Functions

• Function oneof provides a way of selecting one out
of several active processors
– Defined in Multi Struct program (A.15) in manual
– Procedure is essential for associative programming.

• Code for oneof:
multi unsigned oneof(void):1

{ /* Stores coordinate values in multi
variables x and y */

multi unsigned x = multi_x(),

 y = multi_y(),

 uno:1 = 0;

/* Next select processor with highest
coordinate value */

if(x == >? x)

 if(y == >? y)

 uno = 1;

return uno;

}

• Note that multi variable uno stores a 1 for exactly one
processor and all the other coordinates of uno stores a 0.

• The function oneof can be used by another procedure
which is called by multi_perform.
– An example of oneof being called by another

procedure is given on pages A47-50 of the manual.
– Should be useable in the form

if(oneof()) /* Check to see if an active responder exists */

• Following preceding code, we can assign
a = >? x; b = >? y; c = >? z
Then (a,b,c) stores the location of the PE selected by oneof

MultiC Language

15

• Preceding procedure assumed a 2D configuration
of processors with z=1.

– If configuration is 3D, the process selecting the
coordinates can be continued by selecting the
highest z-coordinate.

• Stepping through the active PEs (i.e., next)

– Provides the MultiC equivalent of the ASC next
command

– An additional one-bit multi int called bi (for
“busy-idle”) is needed.

– First set bi to zero

– Activate the PEs you wish to step through.

– Next, have the active PEs to write a 1 into bi.

– Use

if(oneof())

to restrict the mask to one of the active PEs.

– Perform all desired operations with active PE.

– Have active PE set its bi value to 0 and then
exit the above if statement.

– Use the += (accumulative sum) operator to see if
any PEs remain to be processed.

• If so, return to step above calling oneof

• This step can be implemented using a while
loop.

MultiC Language

16

Printing values of a Multi Variable

• Example: Print a block of the 2D bit array called
image.
– A function select_int is used which will return

the value of image at the specified (x,y,z)
coordinate.

– The printing occurs in two loops which
• increments the value of x from 0 to some

specified constant.
• increments the value of y from 0 to some

specified constant.
– This example is from page 8-1 of the manual

and is part of a larger example on pgs A16-18.
– select_int Function

select_int (multi *mptr, int x, int y, int z)
/* Here, *mptr is a uni pointer to type multi */

{ int r
if(multi_x == x &&

multi_y == y &&
multi_z == z)

/* Restricts scope to the one PE at (x,y,z) */

r = 1 = *mptr;
return r;
/* Transfers binary value of multi variable at location
(x,y,z) to the uni variable. */ }

MultiC Language

17

– The two loops to print a block of values of the
image multi variable.
for(y = 0; y < ysize; y++)
{ for (x =0; x < xsize; x++)

 printf(“% d”, select_int(&image,x,y,z)
 printf(“\n”);
}

• Above technique can be adapted to print or read
multi variables or part of multi variables.
– Efficient as long as the number of locations

accessed is small.
• If I/O operations involving large multi variables are

needed, more efficient data transfer functions
described in manual (Chapter 8 and Sections 11.2.2
and 11.13.6) should be used.

• The functions multi_fread and multi_fwrite are
analogous to fwrite and fread in C. Information
about them is given on pages 11-1 to 11-4 of the
manual.

• The functions
multi_from_uni ...
multi_to_uni ...

(where “...” is replaced with char, short, int, long,
float, etc.) are described on pages 11-17 to 11-
22.

– Functions are also used in several examples.

MultiC Language

18

• Loading and Unloading
• Allows the user to transfer whole arrays from “uni”

to/from “multi”.
– multi_from_uni_int(mptr *, uniptr *, x,

y, z);

– multi_to_uni_int(mptr *, uniptr *, x,
y, z);

– Also for:

• char

• short

• int

• long

• float

• double

• cfloat

• cdouble

– Example:
• multi_from_uni_int(&mtemp,

&utarget[0][0][0], TSIZEX, TSIZEY, TSIZEZ
);

MultiC Language

19

Compiling and Executing Programs on the
WaveTracer

• MultiC on WaveTracer

– login on intrepid

– Location of WaveTracer Software is in
/local/opt/wt

• Put that subdirectory in your PATH
environment variable.

– Command to compile (note extension)

• mcc filename.mc

• mcc -o executable_name filename.mc

• Executing ASC on the WaveTracer

– This is not presently installed on intrepid!!!!!

– login on intrepid

– cd /usr/local/ASC/ASC

– Command to compile

asc -wt file.asc [< file2.asc]

– Command to execute

????????????????????

MultiC Language

20

• Recursion
• It is possible to write recursive “multi” functions in

multiC, but you have to test if there are active PEs
still working.

• Consider the following multiC function

multi int factorial(multi int n)

{

multi int r;

if(n != 1)

r = (factorial(n-1)*n);

else

r = 1;

return(r);

}

• What happens?

MultiC Language

21

• Recursion

multi int factorial(multi int n)

{

multi int r;

/* stop calculating if every component has
been computed */

if(! |= (multi int) 1)

return((multi int) 0);

/* otherwise, continue calculating */

if(n > 1)

r = factorial(n-1) * n;

else

r = 1;

return(r);

}

MultiC Language

22

