The MultiC Language

MultiC is primary language on the WaveTracer and
the Zephyr SIMD computers.

The Zephyr is a second generation WaveTracer, but
was never commercially available.

Both MultiC and a parallel language designed for
the MasPar are similar to an earlier parallel
language called C*.

— C* was designed by Guy Steele for the
Connection Machine.

— All are data parallel and extensions of the C
language
An assembler was also written for the WaveTracer
(and probably the Zephyr).
— It was intended for use only by company
technicians.

— Information about assembler were released to
WaveTracer customers on a “need to know”
basis.

— No manual was written but some details were
recorded in a short writeup/report.
— Professor Potter has a reasonable amount of

information about assembler to use in putting
the ASC language on the WaveTracer

MultiC Language I

e MultiC is an extension to ANSI C, as documented
by the following book:

— The C Programming Language, Second Edition,
1988, Kernighan & Richie.

* The manual for the MultiC language is a spiral
bound book titled “The MultiC Programming
Language” by WaveTracer, 1991.

» The WaveTracer computer is called a Data
Transport Computer (DTC) in manual

— a large amount of data can be moved in parallel
using interprocessor communications.

* Primary expected uses for WaveTracer were
scientific modeling and scientific computation

— Accoustic waves

— heat flow

— fluid flow

— medical imaging

— molecular modeling
— neural networks

» The 3-D applications are supported by a 3D mesh
on the WaveTracer

— Done by sampling a finite set of points (nodes)
in space.

MultiC Language

WaveTracer Architecture Background

Architecture for Zephyr is fairly similar
— Exceptions will be mentioned whenever known

Each board has 4096 bit-serial processors, which
can be connected in any of the following ways:

— 16x16x16 cube in 3D space
— 64x64 square in 2D space
— 4096 array in 1D space

The 3D architecture is native on the WT and the
other networks are supported in hardware using
primarily the 3D hardware

— The Zephyr probably has a 2D network and
only simulates the more expensive 3D network
using system software.

WaveTracer was available in 1, 2, or 4 boards,
arranged as follows:

— 2 boards were arranged as a 16x32x16 cube
* one cube stacked on the top of another cube
» 8192 processors overall

MultiC Language

WaveTracer Architecture (Cont)

— Four boards are arranged as a 32x32x16 cube
* 16,384 procesors
» Arranged as two columns of stacked cubes

» Computer supports automatic creation of virtual
processors and network connections to connect
these virtual processors.

— If each processor supports k nodes, this slows
down execution speed by a factor of k

» Each processor performs each operation k
times.

* Limited by the amount of memory required
for each virtual node

* In practice, slowdown is usually less than k

» The set of virtual processors supported by a
physical processor is called its territory.

MultiC Language




Specifiers for MultiC Variables

* Any datatype in C except pointers can be declared
multi

» This replicates the data object for each processor, to
produce a 1,2, or 3 dimensional data object

* In a parallel execution, all multi objects must have
the same dimension.

e The multi declaration follows the same format as
ANSCC,e.g

multi int imag, buffer;

» The uni operation is used to declare a scalar
variable

— Is the default and need not be shown.
— The following are equivalent:
uni int ptr;
int ptr;
» Bit Length Variables
» can be of type uni or multi
— Allows user to save memory

— All operations can be performed on these bit-
length values

— Example: A 2 color image can be declared by
multi unsigned int image :1;
and an 8 color image by
multi unsigned int picture:3;

MultiC Language

Some Control Flow Commands

For uni type data structures, control flow in MultiC
is identical to that in ANSI C.

IF-ELSE Statement

— Asin ASC, both the IF and ELSE portions of
the code is executed.

— As with ASC, the IF is a mask-setting operation
rather than a branching command

— FORMAT: Same as for C

— WARNING: Both sets of statements are
executed.

* Even if no responders are active in one part,
the sequential commands in that part are

executed.
— Differs from ASC here
— Example: count := count + 1;
WHILE statement

The format used is

while(expression)

— The repetition continues as long as expression
is satisfied by one or more responders.

— While does not change scope (i.e., the mask).
— Commands are executed by all processors that
were active upon initially reaching the WHILE

MultiC Language 9

Other Commands

» Jump Statements
— goto, return, continue, break

— These commands are in conflict with structured
programming and should be used with restraint.

» Parallel Reduction Operators

*= Accumulative Product
/= Recripocal Accumulative Product
+= Accumulative Sum

-= Negate & then Accumulative Sum
&= Accumulative bitwise AND

|= Accumulative bitwise OR

>7= Accumulative Maximum

<?= Accumulative Minimum

» Each of the above reduction operations return a uni
value and provide a powerful arithmetic operation.

— Each accumulative operation would otherwise
require one or more ANSI C loop constructs.

— Example: If A is a multi data type
largest value=  >?=A

smallest value = <?=A

MultiC Language

Data Replication
— Example:
multi int A=0;

A =2
— First statement stores 0 in every cell in A field
— Last statement stores 2 in every cell in A field
Interprocessor Communications
— Operators have the form
[dx; dy; dz]m
— This operator can shift the components of the multi

variable m of all active processors along one or more
coordinate dimensions.

A=[-1;2;11B
» Causes each active processor to move the data in

its B field to the A field of the processor at the
following location:

— Example:

— one unit in the negative X direction
— one unit in the positive Y direction
— two units in the positive Z direction
— Coordinate Axes
Y Z

MultiC Language




— Conventions:
* If value of dz operator is not specified, it is
assumed to be 0
* If the values of dy and dz operators are not
specified, both are assumed to be 0
» Example: [x; y]V is the same as [x; y; 0]V
— Inactive processor actions
* Does not send its data to another processor

* Participates in moving the data from other
processors along.

— Transmission of data occurs in lock step (SIMD
fashion) without conjestion or buffering.

Coordinate Functions

— Used to return a coordinate for each active
virtual processor.

— Format: multi_x(), multi_y(), and multi_z()

— Example:
If(multi x() ==0 && multi y==2 && multi z==1)
u= +=A;
* Note that all processors except one at (0,2,1) are
inactive with the body of the IF.

* The accumulated sum of the active components of the
multivariable A is just the value of the component of A
at processor (0,2,1)

» Effect of this example is to store the value in A at
(0,2,1) in the uni variable u.

MultiC Language

 Ifthe second command in the example is changed to
A=u
the effect is to store the contents of the uni variable u
into multi variable A at location (0,2,1).
* (see manual pg 11-13,14 for more details)
Arrays
— Multi-pointers are not supported.
+ Can not have a parallel variable containing a
pointer to each component of the array.
— uni pointers to multi-variables are allowed.
— Array Examples:
int array 1 [10];
int array 2 [5][5];
multi int array 3 [5];
e array 1 isa 1l dimensional standard C array
e array 2 isa 2 dimensional standard C array
+ array_3is a 1-dimensional array of multi variables

MULTI PERFORM Command

— Command gives the size of each dimension of
all multi-values prior to calling for a parallel
execution.

— Format:

multi_perform(func, xsize, ysize, zsize)
+ Here, “func” is the function being executed.
» “xsize”, “ysize”, “zsize” are positive integers
specifying the DTC network configuration.

o If“zsize” is 1, then multi_perform creates a 2D
grid of size “xsize ¥ ysize”

MultiC Language 01

— multi_perform is normally called within the

main program.
» Usually calls a subroutine that includes all of the
— parallel work
— parallel I/O
— The main program usually includes
— Opening and closing of files
— Some of the scalar I/O
— define and include statements

— When multi_perform is called, it initializes any
extern and static multi objects

— In the previous example, multi_perform calls
func. After func returns, the multi space created
for it becomes undefined.

— The perror function is extended to print error
messages corresponding to errno numbers
resulting from the execution of multiC
extensions.

* Has the following format
if(multi_perform(func,x,y,z)) perror(argv[0]);
» See usage in the examples in Appendix A
* More information on page 11-2 of manual
Examples in Manual

— Many examples in the manual

— 17 in appendices alone

— Also stored under exname.mc in the MultiC package
* They can be compiled and executed.

MultiC Language

The AnyResponder Function

Code Segment for Tallying Responders
unsigned int short, tall;
multi float height;
load_height; /* assigns values to height */
if(height >= 6)
tall= += (multi int)1;
else
short = += (multi int)1;
printf(“There are %d tall people \n”, tall);
Comments on Code Segment
— Note that the construct
+= (multi int)1
counts the active PE (i.e., responders).

— This technique avoids setting up a bit field to
use to tally active PEs.

* Instead sets up a temporary multi variable.

— Can be used to see there is at least one
responder at a given step.

* Check to see if resulting sum is positive

— Provides technique to define the AnyResponder
function needed for associative programming

MultiC Language 4




Accessing Components from Multi Variables

Code from page 11-14 of MultiC manual
#include <multi.h> /* includes multi library */
#include <stdio.h>
#include <stdio.h>
void work (void)

{ uniint a, b, c, u;

multi int n;

/* Code goes here to assign values to n */

/* Code goes here to assign values to a, b, ¢ */

if (mult x()==a && multi_y()==b

&& multi_z() ==c¢)
u = +=n; /* Assigns value of n at PE(a,b,c) */
}
int main (int argc, char, *argv[])
{ if( multi_perform(work, 7,7, 7))
perror = argv{0};
exit(exit_success);

To place a value of 5 into the selected location, replace the line
“u = +=n" with the line

n=>5;
The capability to read or place a value in a parallel variable at a
selected position is essential for multiC to execute associative
programs.

MultiC Language el

The oneof and next Functions

* Function oneof provides a way of selecting one out
of several active processors

— Defined in Multi Struct program (A.15) in manual
— Procedure is essential for associative programming.
Code for oneof:

multi unsigned oneof (void) :1

{ /* Stores coordinate values in multi
variables x and y */

multi unsigned x = multi_x(),
y = multi y(),
uno:1 = 0;

/* Next select processor with highest
coordinate value */

if( x == >? x)
if(y == >? y)
uno = 1;

return uno;
}

* Note that multi variable uno stores a 1 for exactly one
processor and all the other coordinates of uno stores a 0.

» The function oneof can be used by another procedure
which is called by multi_perform.

— An example of oneof being called by another
procedure is given on pages A47-50 of the manual.

— Should be useable in the form
if(oneof()) /* Check to see if an active responder exists */
» Following preceding code, we can assign
a=>7x; b=>?y,¢c=>%z
Then (a,b,c) stores the location of the PE selected by oneof’

MultiC Language vl

Preceding procedure assumed a 2D configuration
of processors with z=1.

— If configuration is 3D, the process selecting the
coordinates can be continued by selecting the
highest z-coordinate.

Stepping through the active PEs (i.e., next)

— Provides the MultiC equivalent of the ASC next
command

— An additional one-bit multi int called bi (for
“busy-idle”) is needed.

— First set bi to zero
— Activate the PEs you wish to step through.
— Next, have the active PEs to write a 1 into bi.
— Use
if(oneof())
to restrict the mask to one of the active PEs.
— Perform all desired operations with active PE.

— Have active PE set its bi value to 0 and then
exit the above if statement.

— Use the += (accumulative sum) operator to see if
any PEs remain to be processed.

* If so, return to step above calling oneof

* This step can be implemented using a while
loop.

MultiC Language ST

Printing values of a Multi Variable

* Example: Print a block of the 2D bit array called
image.
— A function select_int is used which will return
the value of image at the specified (x,y,z)
coordinate.

— The printing occurs in two loops which

* increments the value of x from 0 to some
specified constant.

* increments the value of y from 0 to some
specified constant.

— This example is from page 8-1 of the manual
and is part of a larger example on pgs A16-18.

— select_int Function
select_int (multi *mptr, int X, int y, int z)
/* Here, *mptr is a uni pointer to type multi */
{ intr
if( multi x ==x &&
multi y=y &&
multi z==7z)
/* Restricts scope to the one PE at (x,y,z) */
r=1=*mptr;
return 1;

/* Transfers binary value of multi variable at location
(x,y,z) to the uni variable. */ }

MultiC Language 91




— The two loops to print a block of values of the
image multi variable.

for( y = 0; y < ysize; y++)

{ for (x =0; x < xsize; x++)
printf( “% d”, select_int(&image,x,y,z)
printf( “\n”);

Above technique can be adapted to print or read
multi variables or part of multi variables.

— Efficient as long as the number of locations
accessed is small.

If I/O operations involving large multi variables are
needed, more efficient data transfer functions
described in manual (Chapter 8 and Sections 11.2.2
and 11.13.6) should be used.

The functions multi _fread and multi_fwrite are
analogous to fwrite and fread in C. Information
about them is given on pages 11-1 to 11-4 of the
manual.

The functions
multi_from_uni ...
multi_to uni ...

(where “...” is replaced with char, short, int, long,
float, etc.) are described on pages 11-17 to 11-
22.

— Functions are also used in several examples.

MultiC Language L1

» Loading and Unloading

Allows the user to transfer whole arrays from “uni”
to/from “multi”.
- multi from uni int( mptr *, uniptr *, x,
Yr 2z )3
— multi to uni int( mptr *, uniptr *, x,
Yr 2z )i

— Also for:
* char
* short
* int
* long
* float
* double
* cfloat
* cdouble
— Example:

e multi from uni_int( &mtemp,
sutarget[ 0][ 0][ 0] , TSIZEX, TSIZEY, TSIZEZ
)i

MultiC Language 8l

Compiling and Executing Programs on the
WaveTracer

MultiC on WaveTracer
— login on intrepid
— Location of WaveTracer Software is in
/local/opt/wt

* Put that subdirectory in your PATH
environment variable.

— Command to compile (note extension)
» mcc filename.mc

* mcc -0 executable name filename.mc

Executing ASC on the WaveTracer
— This is not presently installed on intrepid!!!!!
— login on intrepid

cd /usr/local/ASC/ASC

Command to compile

asc -wt file.asc [< file2.asc]

— Command to execute
2999999999999929292999

MultiC Language 6l

Recursion

It is possible to write recursive “multi” functions in
multiC, but you have to test if there are active PEs
still working.

Consider the following multiC function

multi int factorial( multi int n )

{

multi int r;

if(n !'=1)

r = (factorial(n-1)*n);
else

r =1;

return( r );

What happens?

MultiC Language 0c




e Recursion

multi int factorial( multi int n )

{

multi int r;

/* stop calculating if every component has
been computed */

if( ! |= (multi int) 1)

return(( multi int ) 0 );

/* otherwise, continue calculating */

if(n>1)

r = factorial( n-1 ) * n;
else

r =1;

return( r );

MultiC Language

MultiC Language w




