.

Parallel Computers

References: [1] - [4] given below; [5] & [6] given on slide 14.
. Chapter 1, “Parallel Programming ” by Wilkinson, el.
. Chapter 1, “Parallel Computation” by Akl
. Chapter 1-2, “Parallel Computing” by Quinn, 1994
. Chapter 2, “Parallel Processing & Parallel Algorithms” by Roosta

Need for Parallelism

— Numerical modeling and simulation of
scientific and engineering problems.

— Solution for problems with deadlines
* Command & Control problems like ATC.
— Grand Challenge Problems

» Sequential solutions may take months or
years.

Weather Prediction - Grand Challenge Problem

— Atmosphere is divided into 3D cells.

— Data such as temperature, pressure, humidity,
wind speed and direction, etc. are recorded at
regular time-intervals in each cell.

— There are about 5x108 cells of (1 mile) 3.

— It would take a modern computer over 100

days to perform necessary calculations for 10
day forecast.

Parallel Programming - a viable way to increase
computational speed.

— Opverall problem can be split into parts, each of
which are solved by a single processor.

Parallel Computers I

— Ideally, n processors would have n times the
computational power of one processor, with
each doing 1/n™ of the computation.

— Such gains in computational power is rare, due
to reasons such as

* Inability to partition the problem perfectly
into n parts of the same computational size.

» Necessary data transfer between processors
* Necessary synchronizing of processors
Two major styles of partitioning problems
— (Job) Control parallel programming

e Problem is divided into the different, non-
identical tasks that have to be performed.

 The tasks are divided among the processors
so that their work load is roughly balanced.

* This is considered to be coarse grained
parallelism.

— Data parallel programming

» Each processor performs the same
computation on different data sets.

» Computations do not necessarily have to be
synchronous.

* This is considered to be fine grained
parallelism.

Parallel Computers

Shared Memory Multiprocessors (SMPs)

All processors have access to all memory locations .
The processors access memory through some type
of interconnection network.

This type of memory access is called uniform
memory access (UMA) .

A data parallel programming language, based on a
language like FORTRAN or C/C++ may be
available.

Alternately, programming using threads is
sometimes used.

More programming details will be discussed later.
Difficulty for the SMP architecture to provide fast
access to all memory locations result in most SMPs
having hierarchial or distributed memory systems.
— This type of memory access is called
nonuniform memory access (NUMA).

Normally, fast cache is used with NUMA systems
to reduce the problem of different memory access
time for PEs.

— This creates the problem of ensuring that all
copies of the same date in different memory
locations are identical.

— Numerous complex algorithms have been
designed for this problem.

Parallel Computers

(Message-Passing) Multicomputers

Processors are connected by an interconnection
network.

Each processor has a local memory and can only
access its own local memory.

Data is passed between processors using messages,
as dictated by the program.

Note: If the processors run in SIMD mode (i.e.,
synchronously), then the movement of the data
movements over the network can be synchronous:

— Movement of the data can be controlled by
program steps.

— Much of the message-passing overhead (e.g.,
routing, hot-spots, headers, etc. can be avoided)

— Synchronous parallel computers are not usually
included in this group of parallel computers.

A common approach to programming
multiprocessors is to use message-passing library
routines in addition to conventional sequential
programs (e.g., MPL, PVM)
The problem is divided into processes that can be
executed concurrently on individual processors. A
processor is normally assigned multiple processes.

Multicomputers can be scaled to larger sizes much
better than shared memory multiprocessors.

Parallel Computers




Multicomputers (cont.)

* Programming disadvantages of message-passing

— Programmers must make explicit message-
passing calls in the code

— This is low-level programming and is error
prone.

— Data is not shared but copied, which increases
the total data size.

— Data Integrity: difficulty in maintaining
correctness of multiple copies of data item.

* Programming advantages of message-passing
— No problem with simultaneous access to data.

— Allows different PCs to operate on the same
data independently.

— Allows PCs on a network to be easily upgraded
when faster processors become available.

*  Mixed “distributed shared memory” systems
— Lots of current interest in a cluster of SMPs.
» See David Bader’s or Joseph JaJa’s website
— Other mixed systems have been developed.

Parallel Computers

Flynn’s Classification Scheme

SISD - single instruction stream, single data stream
— Primarily sequential processors

MIMD - multiple instruction stream, multiple data
stream.

— Includes SMPs and multicomputers

— processors are asynchronous, since they can
independently execute different programs on
different data sets.

— Considered by most researchers to contain the
most powerful, least restricted computers.

— Have very serious message passing (or shared
memory) problems that are often ignored when

» compared to SIMDs
* when computing algorithmic complexity

— May be programmed using a multiple
programs, multiple data (MPMD) technique.

— A common way to program MIMDs is to use a
single program, multiple data (SPMD) method

* Normal technique when the number of
processors are large.

* Data Parallel programming style for MIMDs
SIMD: single instruction and multiple data streams.

— One instruction stream is broadcast to all
processors.

Parallel Computers

Flynn’s Taxonomy (cont.)

SIMD (cont.)

— Each processor (also called a processing
element or PE) is very simplistic and is
essentially an ALU;

* PEs do not store a copy of the program nor
have a program control unit.

— Individual processors can be inhibited from
participating in an instruction (based on a data
test).

— All active processor executes the same
instruction synchronously, but on different data
(from their own local memory).

— The data items form an array and an instruction
can act on the complete array in one cycle.

MISD - Multiple Instruction streams, single data
stream.

— This category is not used very often.

— Some include pipelined architectures in this
category.

Parallel Computers

Interconnection Network Terminology

A link is the connection between two nodes.

— A switch that enables packets to be routed
through the node to other nodes without
disturbing the processor is assumed.

— The link between two nodes can be either
bidirectional or use two directional links .
— Either one wire to carry one bit or parallel wires
(one wire for each bit in word) can be used.
— The above choices do not have a major impact
on the concepts presented in this course.
The diameter is the minimal number of links
between the two farthest nodes in the network.
— The diameter of a network gives the maximal
distance a single message may have to travel.
The bisection width of a network is the number of

links that must be cut to divide the network of n
PEs into two (almost) equal parts, [n/2] and |n/2].

Parallel Computers




Interconnection Network Terminology (cont.)

The below terminology is given in [1] and will be
occasionally needed (e.g., see “Communications”
discussion starting on page 16).
— The bandwidth is the number of bits that can be
transmitted in unit time (i.e., bits per second).
— The network latency is the time required to
transfer a message through the network.

» The communication latency is the total time
required to send a message, including
software overhead and interface delay.

* The message latency or startup time is the
time required to send a zero-length message.

— Software and hardware overhead, such as
» finding a route
» packing and unpacking the message

Parallel Computers

Interconnection Network Examples

* References: 1-4 discuss these network examples,
but reference 3 (Quinn) is particularly good.

*  Completely Connected Network
— Each of n nodes has a link to every other node.
— Requires n(n-1)/2 links
— Impractical, unless very few processors

* Line/Ring Network

— A line consists of a row of n nodes, with
connection to adjacent nodes.

— Called a ring when a link is added to connect
the two end nodes of a line.

— The line/ring networks have many applications.
— Diameter of a line is n-1 and of a ring is |n/2].

— Minimal distance, deadlock-free parallel
routing algorithm: Go shorter of left or right.

Parallel Computers ot

Interconnection Network Examples (cont)

The Mesh Interconnection Network

— Each node in a 2D mesh is connected to all four
of its nearest neighbors.

— The diameter of a Vn xVn mesh is 2(vVn - 1)

— Has a minimal distance, deadlock-free parallel
routing algorithm: First route message up or
down and then right or left to its destination.

— If the horizonal and vertical ends of a mesh to
the opposite sides, the network is called a forus.

— Meshes have been used more on actual
computers than any other network.

— A 3D mesh is a generalization of a 2D mesh
and has been used in several computers.

— The fact that 2D and 3D meshes model physical
space make them useful for many scientific and
engineering problems.

Parallel Computers

Interconnection Network Examples (cont)

* Binary Tree Network

— A binary tree network is normally assumed to
be a complete binary tree.

— It has a root node, and each interior node has
two links connecting it to nodes in the level
below it.

— The height of the tree is |Ig n] and its diameter
is2|lgn].

— In an m-ary tree, each interior node is
connected to m nodes on the level below it.

— The tree is particularly useful for divide-and-
conquer algorithms.

— Unfortunately, the bisection width of a tree is 1
and the communication traffic increases near
the root, which can be a bottleneck.

— In fat tree networks, the number of links is
increased as the links get closer to the root.

— Thinking Machines’ CM5 computer used a 4-
ary fat tree network.

Parallel Computers a




Interconnection Network Examples (cont)

Hypercube Network
— A 0-dimensional hypercube consists of one node.

— Recursively, a d-dimensional hypercube consists of
two (d-1) dimensional hypercubes, with the
corresponding nodes of the two (d-1) hypercubes
linked.

— Each node in a d-dimensional hypercube has d links.
— Each node in a hypercube has a d-bit binary address.

— Two nodes are connected if and only if their binary
address differs by one bit.

— A hypercube has n = 2¢ PEs

— Advantages of the hypercube include
* its low diameter of Ig(n) or d
* its large bisection width of n/2
* its regular structure.

— An important practical disadvantage of the
hypercube is that the number of links per node
increases as the number of processors increase.

+ Large hypercubes are difficult to implement.

» Usually overcome by increasing nodes by
replacing each node with a ring of nodes.
— Has a “minimal distance, deadlock-free parallel
routing” algorithm called e-cube routing:
» At each step, the current address and the
destination address are compared.
» Each message is sent to the node whose address

is obtained by flipping the leftmost digit of
current address where two addresses differ.

Parallel Computers e

Embedding

References: [1, Wilkinson] and [3, Quinn]. Quinn is the best of
1-4, but it does not cover a few topics. Also, two additional
references should be added to our previous list. Reference [5]
below has a short coverage of embeddings and [6] has an
encyclopedic coverage of many topics including embeddings.

— [5] “Introduction to Parallel Computing”, Vipin Kumar,
Grama, Gupta, & Karypis, 1994, Benjamin/Cumming,
ISBN 0-8053-3170-0.

— [6] “Introduction to Parallel Algorithm & Architectures”, F.
Thomson Leighton, 1992, Morgan Kaufmann.
An embedding is a 1-1 function (also called a
mapping) that specifies how the nodes of domain
network can be mapped into a range netw ork.
— Each node in range network is the target of at
most one node in the domain network, unless
specified otherwise.

— The domain network sJ0144dD0004 Tc0.6Largeasl

Parallel Computers vl



Communications (cont)

» At each node, the designation information is
looked at and used to select which node to
forward the packet to.

» Routing algorithms (often probabilistic) are used
to avoid hot spots and to minimize traffic jams.

* Significant latency is created by storing each
packet in each node it reaches.

» Latency increases linearly with the length of the
route.

»  Store-and-forward packet switching is the name used to
describe preceding packet switching.
»  Virtual cut-through package switching can be used to
reduce the latency.
— Allows packet to pass through a node without being
stored, if the outgoing link is available.
— If complete path is available, a message can
immediately move from source to destination..
*  Wormhole Routing alternate to store-and-forward packet
routing
— A message is divided into small units called flits
(flow control units).
— flits are 1-2 bytes in size.
— can be transferred in parallel on links with multiple
wires.

— Only head of flit is initially transferred when the next
link becomes available.

Parallel Computers L

Communications (cont)

— As each flit moves forward, the next flit can
move forward.

— The entire path must be reserved for a message
as these packets pull each other along (like cars
of a train).

— Request/acknowledge bit messages are required
to coordinate these pull-along moves. (see [1])

— The complete path must be reserved, as these
flits are linked together.

— Latency: If the head of the flit is very small
compared to the length of the message, then the
latency is essentially the constant /B, with L
the message length and B the link bandwidth.

Deadlock

— Routing algorithms needed to find a path
between the nodes.

— Adaptive routing algorithms choose different
paths, depending on traffic conditions.

— Livelock is a deadlock-type situation where a
packet continues to go around the network,
without ever reaching its destination.

— Deadlock: No packet can be forwarded because
they are blocked by other stored packets
waiting to be forwarded.

Input/Qutput: A significant problem on all parallel
computers.

Parallel Computers 81

Metrics for Evaluating Parallelism

* References: All references cover most topics in this section and
have useful information not contained in others. Ref. [2, Akl]
includes new research and is the main reference used, although
others (esp. [3, Quinn] and [1, Wilkinson]) are also used.

* Granularity: Amount of computation done
between communication or synchronization steps
and is ranked as fine, intermediate, and coarse.

— SIMDs are built for efficient communications
and handle fine-grained solutions well.

— SMPs or message passing MIMDS handle
communications less efficiently than SIMDs
but more efficiently than clusters and can
handle intermediate-grained solutions well.

— Cluster of Workstations or distributed systems
have slower communications among processors
and is appropriate for coarse grain applications.

— For asynchronous computations, increasing the
granularity

* reduces expensive communications

* reduces costs of process creation

* but reduces the nr of concurrent processes
*  Speedup

— A measure of the increase in running time due
to parallelism.

— Based on running times, S(n) = t/t, , where

* t,is the execution time on a single processor,
using the fastest known sequential algorithm

Parallel Computers 61

Parallel Metrics (cont)

where

* 1, is the execution time using a parallel
processor.

— In theoretical analysis, S(n) = ts/tp where

* t,is the worst case running time for of the
fastest known sequential algorithm for the
problem

* ¢, is the worst case running time of the
parallel algorithm using n PEs.

— False Claim: The maximum speedup for a
parallel computer with n PEs is n (called /inear
speedup). Proof for “traditional problems” is:

» Assume computation is divided perfectly
into n processes of equal duration.

¢ Assume no overhead is incurred

» Then, a optimal parallel running time of » is
obtained

 This yields an absolute maximal running
time of ¢ /n.

e Then S(n) =t /(t;/n) = n.
— Normally, the speedup is much less than », as
» above assumptions usually do not occur.

* Usually some parts of programs are
sequential and only one PE is active

Parallel Computers oc




Parallel Metrics (cont)

* During parts of the execution, some PEs are
waiting for data to be received or to send
messages.

Superlinear speedup (i.e., when S(n) > n):
— Most texts besides [2,3] states that while this
can happen, it is rare and due to reasons such as

* extra memory in parallel system.
* a sub-optimal sequential algorithm used.

* luck, in case of algorithm that has a random
aspect in its design (e.g., random selection)

— Selim Akl has shown that for some less
standard problems, superlinearity will occur:

* Some problems can not be solved without
use of parallel computation.

* Some problems are natural to solve using

Parallel Computers Ic



More Metrics (cont.)

Cost-Optimal Parallel Algorithm: A parallel

algorithm for a problem is said to be cost-optimal if

its cost is proportional to the running time of an

optimal sequential algorithm for the same problem.
— By proportional, we means that

cost= t,xn=kxI

where £ is a constant. (See pg 67 of [1]).
— Equivalently, a parallel algorithm is optimal if
parallel cost= O(f(1)),
where f{?) is the running time of an optimal
sequential algorithm.

— In cases where no optimal sequential algorithm
is known, then the “fastest known” sequential
algorithm is often used instead.

* Also, see pg 67 of [1, Wilkinson].

Parallel Computers sc




