
Parallel Computers

1

Parallel Computers

• References: [1] - [4] given below; [5] & [6] given on slide 14.
• Chapter 1, “Parallel Programming ” by Wilkinson, el.
• Chapter 1, “Parallel Computation” by Akl
• Chapter 1-2, “Parallel Computing” by Quinn, 1994
• Chapter 2, “Parallel Processing & Parallel Algorithms” by Roosta

• Need for Parallelism
– Numerical modeling and simulation of

scientific and engineering problems.
– Solution for problems with deadlines

• Command & Control problems like ATC.
– Grand Challenge Problems

• Sequential solutions may take months or
years.

• Weather Prediction - Grand Challenge Problem
– Atmosphere is divided into 3D cells.
– Data such as temperature, pressure, humidity,

wind speed and direction, etc. are recorded at
regular time-intervals in each cell.

– There are about 5×108 cells of (1 mile) 3 .
– It would take a modern computer over 100

days to perform necessary calculations for 10
day forecast.

• Parallel Programming - a viable way to increase
computational speed.
– Overall problem can be split into parts, each of

which are solved by a single processor.

Parallel Computers

2

– Ideally, n processors would have n times the
computational power of one processor, with
each doing 1/nth of the computation.

– Such gains in computational power is rare, due
to reasons such as

• Inability to partition the problem perfectly
into n parts of the same computational size.

• Necessary data transfer between processors

• Necessary synchronizing of processors

• Two major styles of partitioning problems

– (Job) Control parallel programming

• Problem is divided into the different, non-
identical tasks that have to be performed.

• The tasks are divided among the processors
so that their work load is roughly balanced.

• This is considered to be coarse grained
parallelism.

– Data parallel programming

• Each processor performs the same
computation on different data sets.

• Computations do not necessarily have to be
synchronous.

• This is considered to be fine grained
parallelism.

Parallel Computers

3

Shared Memory Multiprocessors (SMPs)

• All processors have access to all memory locations .
• The processors access memory through some type

of interconnection network.
• This type of memory access is called uniform

memory access (UMA) .
• A data parallel programming language, based on a

language like FORTRAN or C/C++ may be
available.

• Alternately, programming using threads is
sometimes used.

• More programming details will be discussed later.
• Difficulty for the SMP architecture to provide fast

access to all memory locations result in most SMPs
having hierarchial or distributed memory systems.
– This type of memory access is called

nonuniform memory access (NUMA).
• Normally, fast cache is used with NUMA systems

to reduce the problem of different memory access
time for PEs.
– This creates the problem of ensuring that all

copies of the same date in different memory
locations are identical.

– Numerous complex algorithms have been
designed for this problem.

Parallel Computers

4

(Message-Passing) Multicomputers

• Processors are connected by an interconnection
network.

• Each processor has a local memory and can only
access its own local memory.

• Data is passed between processors using messages,
as dictated by the program.

• Note: If the processors run in SIMD mode (i.e.,
synchronously), then the movement of the data
movements over the network can be synchronous:
– Movement of the data can be controlled by

program steps.
– Much of the message-passing overhead (e.g.,

routing, hot-spots, headers, etc. can be avoided)
– Synchronous parallel computers are not usually

included in this group of parallel computers.
• A common approach to programming

multiprocessors is to use message-passing library
routines in addition to conventional sequential
programs (e.g., MPI, PVM)

• The problem is divided into processes that can be
executed concurrently on individual processors. A
processor is normally assigned multiple processes.

• Multicomputers can be scaled to larger sizes much
better than shared memory multiprocessors.

Parallel Computers

5

Multicomputers (cont.)

• Programming disadvantages of message-passing

– Programmers must make explicit message-
passing calls in the code

– This is low-level programming and is error
prone.

– Data is not shared but copied, which increases
the total data size.

– Data Integrity: difficulty in maintaining
correctness of multiple copies of data item.

• Programming advantages of message-passing

– No problem with simultaneous access to data.

– Allows different PCs to operate on the same
data independently.

– Allows PCs on a network to be easily upgraded
when faster processors become available.

• Mixed “distributed shared memory” systems

– Lots of current interest in a cluster of SMPs.

• See David Bader’s or Joseph JaJa’s website

– Other mixed systems have been developed.

Parallel Computers

6

Flynn’s Classification Scheme

• SISD - single instruction stream, single data stream
– Primarily sequential processors

• MIMD - multiple instruction stream, multiple data
stream.
– Includes SMPs and multicomputers
– processors are asynchronous, since they can

independently execute different programs on
different data sets.

– Considered by most researchers to contain the
most powerful, least restricted computers.

– Have very serious message passing (or shared
memory) problems that are often ignored when
• compared to SIMDs
• when computing algorithmic complexity

– May be programmed using a multiple
programs, multiple data (MPMD) technique.

– A common way to program MIMDs is to use a
single program, multiple data (SPMD) method
• Normal technique when the number of

processors are large.
• Data Parallel programming style for MIMDs

• SIMD: single instruction and multiple data streams.
– One instruction stream is broadcast to all

processors.

Parallel Computers

7

Flynn’s Taxonomy (cont.)

• SIMD (cont.)

– Each processor (also called a processing
element or PE) is very simplistic and is
essentially an ALU;

• PEs do not store a copy of the program nor
have a program control unit.

– Individual processors can be inhibited from
participating in an instruction (based on a data
test).

– All active processor executes the same
instruction synchronously, but on different data
(from their own local memory).

– The data items form an array and an instruction
can act on the complete array in one cycle.

• MISD - Multiple Instruction streams, single data
stream.

– This category is not used very often.

– Some include pipelined architectures in this
category.

Parallel Computers

8

Interconnection Network Terminology

• A link is the connection between two nodes.

– A switch that enables packets to be routed
through the node to other nodes without
disturbing the processor is assumed.

– The link between two nodes can be either
bidirectional or use two directional links .

– Either one wire to carry one bit or parallel wires
(one wire for each bit in word) can be used.

– The above choices do not have a major impact
on the concepts presented in this course.

• The diameter is the minimal number of links
between the two farthest nodes in the network.

– The diameter of a network gives the maximal
distance a single message may have to travel.

• The bisection width of a network is the number of
links that must be cut to divide the network of n
PEs into two (almost) equal parts, n/2 and n/2.

Parallel Computers

9

Interconnection Network Terminology (cont.)

• The below terminology is given in [1] and will be
occasionally needed (e.g., see “Communications”
discussion starting on page 16).

– The bandwidth is the number of bits that can be
transmitted in unit time (i.e., bits per second).

– The network latency is the time required to
transfer a message through the network.

• The communication latency is the total time
required to send a message, including
software overhead and interface delay.

• The message latency or startup time is the
time required to send a zero-length message.

– Software and hardware overhead, such as

» finding a route

» packing and unpacking the message

Parallel Computers

10

Interconnection Network Examples

• References: 1-4 discuss these network examples,
but reference 3 (Quinn) is particularly good.

• Completely Connected Network

– Each of n nodes has a link to every other node.

– Requires n(n-1)/2 links

– Impractical, unless very few processors

• Line/Ring Network

– A line consists of a row of n nodes, with
connection to adjacent nodes.

– Called a ring when a link is added to connect
the two end nodes of a line.

– The line/ring networks have many applications.
– Diameter of a line is n-1 and of a ring is n/2.

– Minimal distance, deadlock-free parallel
routing algorithm: Go shorter of left or right.

Parallel Computers

11

Interconnection Network Examples (cont)

• The Mesh Interconnection Network

– Each node in a 2D mesh is connected to all four
of its nearest neighbors.

– The diameter of a √n ×√n mesh is 2(√n - 1)

– Has a minimal distance, deadlock-free parallel
routing algorithm: First route message up or
down and then right or left to its destination.

– If the horizonal and vertical ends of a mesh to
the opposite sides, the network is called a torus.

– Meshes have been used more on actual
computers than any other network.

– A 3D mesh is a generalization of a 2D mesh
and has been used in several computers.

– The fact that 2D and 3D meshes model physical
space make them useful for many scientific and
engineering problems.

Parallel Computers

12

Interconnection Network Examples (cont)

• Binary Tree Network
– A binary tree network is normally assumed to

be a complete binary tree.

– It has a root node, and each interior node has
two links connecting it to nodes in the level
below it.

– The height of the tree is lg n and its diameter
is 2 lg n .

– In an m-ary tree, each interior node is
connected to m nodes on the level below it.

– The tree is particularly useful for divide-and-
conquer algorithms.

– Unfortunately, the bisection width of a tree is 1
and the communication traffic increases near
the root, which can be a bottleneck.

– In fat tree networks, the number of links is
increased as the links get closer to the root.

– Thinking Machines’ CM5 computer used a 4-
ary fat tree network.

Parallel Computers

13

Interconnection Network Examples (cont)

• Hypercube Network
– A 0-dimensional hypercube consists of one node.
– Recursively, a d-dimensional hypercube consists of

two (d-1) dimensional hypercubes, with the
corresponding nodes of the two (d-1) hypercubes
linked.

– Each node in a d-dimensional hypercube has d links.
– Each node in a hypercube has a d-bit binary address.
– Two nodes are connected if and only if their binary

address differs by one bit.
– A hypercube has n = 2d PEs
– Advantages of the hypercube include

• its low diameter of lg(n) or d
• its large bisection width of n/2
• its regular structure.

– An important practical disadvantage of the
hypercube is that the number of links per node
increases as the number of processors increase.
• Large hypercubes are difficult to implement.
• Usually overcome by increasing nodes by

replacing each node with a ring of nodes.
– Has a “minimal distance, deadlock-free parallel

routing” algorithm called e-cube routing:
• At each step, the current address and the

destination address are compared.
• Each message is sent to the node whose address

is obtained by flipping the leftmost digit of
current address where two addresses differ.

Parallel Computers

14

Embedding

• References: [1, Wilkinson] and [3, Quinn]. Quinn is the best of
1-4, but it does not cover a few topics. Also, two additional
references should be added to our previous list. Reference [5]
below has a short coverage of embeddings and [6] has an
encyclopedic coverage of many topics including embeddings.

– [5] “Introduction to Parallel Computing”, Vipin Kumar,
Grama, Gupta, & Karypis, 1994, Benjamin/Cumming,
ISBN 0-8053-3170-0.

– [6] “Introduction to Parallel Algorithm & Architectures”, F.
Thomson Leighton, 1992, Morgan Kaufmann.

• An embedding is a 1-1 function (also called a
mapping) that specifies how the nodes of domain
network can be mapped into a range network.
– Each node in range network is the target of at

most one node in the domain network, unless
specified otherwise.

– The domain network sJ0.44dD0004 Tc0.6Largeasl

Parallel Computers

17

Communications (cont)

• At each node, the designation information is
looked at and used to select which node to
forward the packet to.

• Routing algorithms (often probabilistic) are used
to avoid hot spots and to minimize traffic jams.

• Significant latency is created by storing each
packet in each node it reaches.

• Latency increases linearly with the length of the
route.

• Store-and-forward packet switching is the name used to
describe preceding packet switching.

• Virtual cut-through package switching can be used to
reduce the latency.

– Allows packet to pass through a node without being
stored, if the outgoing link is available.

– If complete path is available, a message can
immediately move from source to destination..

• Wormhole Routing alternate to store-and-forward packet
routing

– A message is divided into small units called flits
(flow control units).

– flits are 1-2 bytes in size.

– can be transferred in parallel on links with multiple
wires.

– Only head of flit is initially transferred when the next
link becomes available.

Parallel Computers

18

Communications (cont)
– As each flit moves forward, the next flit can

move forward.
– The entire path must be reserved for a message

as these packets pull each other along (like cars
of a train).

– Request/acknowledge bit messages are required
to coordinate these pull-along moves. (see [1])

– The complete path must be reserved, as these
flits are linked together.

– Latency: If the head of the flit is very small
compared to the length of the message, then the
latency is essentially the constant L/B, with L
the message length and B the link bandwidth.

• Deadlock
– Routing algorithms needed to find a path

between the nodes.
– Adaptive routing algorithms choose different

paths, depending on traffic conditions.
– Livelock is a deadlock-type situation where a

packet continues to go around the network,
without ever reaching its destination.

– Deadlock: No packet can be forwarded because
they are blocked by other stored packets
waiting to be forwarded.

• Input/Output: A significant problem on all parallel
computers.

Parallel Computers

19

Metrics for Evaluating Parallelism

• References: All references cover most topics in this section and
have useful information not contained in others. Ref. [2, Akl]
includes new research and is the main reference used, although
others (esp. [3, Quinn] and [1, Wilkinson]) are also used.

• Granularity: Amount of computation done
between communication or synchronization steps
and is ranked as fine, intermediate, and coarse.
– SIMDs are built for efficient communications

and handle fine-grained solutions well.
– SMPs or message passing MIMDS handle

communications less efficiently than SIMDs
but more efficiently than clusters and can
handle intermediate-grained solutions well.

– Cluster of Workstations or distributed systems
have slower communications among processors
and is appropriate for coarse grain applications.

– For asynchronous computations, increasing the
granularity
• reduces expensive communications
• reduces costs of process creation
• but reduces the nr of concurrent processes

• Speedup
– A measure of the increase in running time due

to parallelism.
– Based on running times, S(n) = ts/tp , where

• ts is the execution time on a single processor,
using the fastest known sequential algorithm

Parallel Computers

20

Parallel Metrics (cont)
where
• tp is the execution time using a parallel

processor.
– In theoretical analysis, S(n) = ts/tp where

• ts is the worst case running time for of the
fastest known sequential algorithm for the
problem

• tp is the worst case running time of the
parallel algorithm using n PEs.

– False Claim: The maximum speedup for a
parallel computer with n PEs is n (called linear
speedup). Proof for “traditional problems” is:
• Assume computation is divided perfectly

into n processes of equal duration.
• Assume no overhead is incurred
• Then, a optimal parallel running time of n is

obtained
• This yields an absolute maximal running

time of ts /n.
• Then S(n) = ts /(ts /n) = n.

– Normally, the speedup is much less than n, as
• above assumptions usually do not occur.
• Usually some parts of programs are

sequential and only one PE is active

Parallel Computers

21

Parallel Metrics (cont)

• During parts of the execution, some PEs are
waiting for data to be received or to send
messages.

• Superlinear speedup (i.e., when S(n) > n):

– Most texts besides [2,3] states that while this
can happen, it is rare and due to reasons such as

• extra memory in parallel system.

• a sub-optimal sequential algorithm used.

• luck, in case of algorithm that has a random
aspect in its design (e.g., random selection)

– Selim Akl has shown that for some less
standard problems, superlinearity will occur:

•

Parallel Computers

25

More Metrics (cont.)

• Cost-Optimal Parallel Algorithm: A parallel
algorithm for a problem is said to be cost-optimal if
its cost is proportional to the running time of an
optimal sequential algorithm for the same problem.

– By proportional, we means that
cost = tp × n = k × ts

 where k is a constant. (See pg 67 of [1]).

– Equivalently, a parallel algorithm is optimal if

parallel cost = O(f(t)),

 where f(t) is the running time of an optimal
sequential algorithm.

– In cases where no optimal sequential algorithm
is known, then the “fastest known” sequential
algorithm is often used instead.

• Also, see pg 67 of [1, Wilkinson].

