MODELS OF COMPUTATION (Chapter 2)

- Models
- An abstract description of a real world entity
- Attempts to capture the essential features while suppressing the less important details.
- Important to have a model that is both precise and as simple as possible to support theoretical studies of the entity modeled.
- If experiments or theoretical studies show the model does not capture the important aspects of the physical entity closely, then the model should be refined.
- Many engineers will not accept an abstract model of entity being studied, but insist on a detailed model.
- Often reject a model if it does not capture the lower level details of the physical entity.
- Model of Computation
- Describes a class of computers
- Allows algorithms to be written for a general model rather than for a specific computer.
- Allows the advantages of various models to be studied and compared.
- Important, since the life-time of specific computers is quite short (e.g., 10 years).
- Cube-Connected Cycles (or CCC)
- A problem with the hypercube network is the large number of links each processor must support when q is large.
- The CCC solves this problem by replacing each node of the q-dimensional hypercube with a ring of q processors, each connected to 3 PEs:
- its two neighbors in the ring
- one processor in the ring of a neighboring hypercube node.
- Example: See Figure 2.18 in [2]
- Network Metrics: Recall Metrics for comparing network topologies
- Degree
- The degree of network is the maximum number of links incident on any processor.
- Each link uses a port on the processor, so the most economical network has the lowest degree
- Diameter
- The distance between two processors P and Q is the number of links on the shortest path from P to Q.

Some Additional Networks

- References: [2,Akl, Ch 2], [3, Quinn, Ch 2-3]
- Shuffle Exchange
- Let n be a power of 2 and $P_{0}, P_{1}, \ldots, P_{n-1}$ denote the processors.
- A perfect-shuffle connection is a one-way communication link that exists from
- P_{i} to $P_{2 i}$ if $i<n / 2$ and
- P_{i} to $P_{2 i+1-n}$ if $i \geq n / 2$
- Alternately, a perfect-shuffle connection exists between P_{i} and P_{k} if a left one-digit circular rotation of i, expressed in binary, produces k.
- Its name is due to fact that if a deck of cards were "shuffled perfectly", the shuffle link of i gives the final shuffled position of card i
- Example: See Figure 2.15.
- An exchange connection link is a two way link that exists between P_{i} and P_{i+1} when i is even.
- Figure 2.14 illustrates the shuffle \& exchange links for 8 processors.
- The reverse of a perfect shuffle link is called an unshuffle link.
- A network with the shuffle, unshuffle, and exchange connections is called a shuffleexchange network.

2. Computational Models

Comparison of Network Topologies (cont)

- The diameter of a network is the maximum distance between pairs of processors.
- The bisection width of a network is the minimum number of edges that must be cut to divide the network into two halves (within one).
- Table 2.21 in [2] (reproduced below) compares the topologies of the networks we have discussed.
- See Table 3-1 of Quinn for additional details.

Topology Degree Diameter Bis. W.

$==\mathbf{C =}$			
Linear Array	2	$\mathrm{O}(\mathrm{n})$	1
Mesh	4	$\mathrm{O}(\sqrt{n})$	n
Tree	3	$\mathrm{O}(\lg \mathrm{n})$	1
Shuffle-Exchange	3	$\mathrm{O}(\lg \mathrm{n})$	\sqrt{n}
Hypercube	$\mathrm{O}(\lg \mathrm{n})$	$\mathrm{O}(\lg \mathrm{n})$	$2^{\mathrm{d}-\sqrt{n}}$
Cube-Con. Cycles	3	$\mathrm{O}(\lg \mathrm{n})$	$2^{\mathrm{d}-1}$

PRAM: Parallel Random Access Machine

- References:[2, Ch 2], [3, Ch 2], and [7, Ch 30]
- [7] "Intro to Algorithm", Cormen, et.al., 1990
- The RAM Model (Random Access Machine)
- A memory with M locations. Size of M is as large as needed.
- A processor operating under the control of a sequential program. It can
- load data from memory
- store date into memory
- execute arithmetic \& logical computations on data.
- A memory access unit (MAU) that creates a path from the processor to an arbitrary memory location.
- Sequential Algorithm Steps
- A READ phase in which the processor reads datum from a memory location and copies it into a register.
- A COMPUTE phase in which a processor performs a basic operation on data from one or two of its registers.
- A WRITE phase in which the processor copies the contents of an internal register into a memory location.
- Each processor knows its own ID and algorithms can use processor IDs to control the actions of the processors. (True for all models.)
- PRAM Memory Access Methods
- Exclusive Read (ER): Two or more processors can not simultaneously read the same memory location.
- Concurrent Read (CR): Any number of processors can read the same memory location simultaneously.
- Exclusive Write (EW): Two or more processors can not write to the same memory location simultaneously.
- Concurrent Write (CW): Any number of processors can write to the same memory location simultaneously.
- Variants of Concurrent Write:
- Priority $C W$: The processor with the highest priority writes its value into a memory location.
- Common CW: Processors writing to a common memory location succeed only if they write the same value.
- Arbitrary $C W$: When more than one value is written to the same location, any one of these values (e.g., one with lowest processor ID) is stored in memory
- PRAM Model Description
- Let $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}$ be identical processors
- Assume these processors have a common memory with M memory locations with $\mathrm{M} \geq \mathrm{N}$.
- Each P_{i} has a MAU that allows it to access each of the M memory locations.
- A processor P_{i} sends data to a processor P_{k} by storing it in a memory location that P_{k} can read at a later time.
- The model allows each processor to have its own algorithm and to run asynchronously.
- In many applications, all processors run the same algorithm synchronously.
- Restricted model called synchronous PRAM
- Algorithm steps have 3 or less phases
- READ Phase: Up to n processors read up to n memory locations simultaneously.
- COMPUTE Phase: Up to n processors perform basic arithmetic/logical operations on their local data.
- WRITE phase: Up to n processors write simultaneously into up to n memory locations.
- Random CW: One of the processors is selected by some random process to write its value into memory.
- Combining CW: The values of all the processors trying to write to a memory location are combined into a single value and stored into the memory location.
- Some possible functions for combining numerical values are SUM, PRODUCT, MAXIMUM, MINIMUM.
- Some possible functions for combining boolean values are AND, INCLUSIVE-OR, EXCLUSIVE-OR, etc.

The RAM Model

- A memory with M locations. Size of M is as large as needed.
- A processor operating under the control of a sequential program. It can
- load data from memory
- store date into memory
- execute arithmetic \& logical computations on data.
- A memory access unit (MAU) that creates a path from the processor to an arbitrary memory location.
- Sequential Algorithm Steps
- A READ phase in which the processor reads datum from a memory location and copies it into a register.
- A

PRAM ALGORITHMS

- Reference: Chapter 4 of [2, Akl], Chapter 30 of [7, identified below], and Chapter 2 of [3, Quinn]
- [7] "Introduction to Algorithms" by Cormen, Leisterson, and Rivest, First (older) edition, 1990, McGraw Hill and MIT Press.
- Prefix computation application considered first
- EREW PRAM Model is assumed.
- A binary operation on a set S is a function

$$
\oplus: S ¥ \mathrm{~S} \rightarrow \mathrm{~S} .
$$

- Traditionally, the element $\oplus\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right)$ is denoted as

$$
\mathrm{s}_{1} \oplus \mathrm{~s}_{1} .
$$

- The binary operations considered for prefix computations will be assumed to be
- associative: $\left(\mathrm{s}_{1} \oplus \mathrm{~s}_{2}\right) \oplus \mathrm{s}_{3}=\mathrm{s}_{1} \oplus\left(\mathrm{~s}_{2} \oplus \mathrm{~s}_{3}\right)$
- Examples
- Numbers: addition, multiplication, max, min.
- Strings: concatentation for strings
- Logical Operations: and, or, xor
- Note: \oplus is not required to be commutative.
- Prefix Operations: Assume $\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}-1}$ are in S. The computation of $\mathrm{p}_{0}, \mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}-1}$ defined below is called prefix computation:

$$
\begin{gathered}
\mathrm{p}_{0}=\mathrm{s}_{0} \\
\mathrm{p}_{1}=\mathrm{s}_{0} \oplus \mathrm{~s}_{1} \\
\cdot \\
\mathrm{p}_{\mathrm{n}-1}=\mathrm{s}_{0} \oplus \mathrm{~s}_{1} \oplus \ldots \oplus \mathrm{~s}_{\mathrm{n}-1}
\end{gathered}
$$

$$
\begin{aligned}
& \text { for } j=0 \text { to }(\lg n)-1, \text { do } \\
& \text { for } i=2^{j} \text { to } n-1 \text { do } \\
& h=i-2^{j} \\
& s_{i}=s_{h} \oplus s_{i} \\
& \text { endfor } \\
& \text { endfor }
\end{aligned}
$$

- Analysis:

- Running time is $t(n)=\mathbf{O}(\lg n)$
- Cost is $\mathrm{c}(\mathrm{n})=\mathrm{p}(\mathrm{n}) \times \mathrm{t}(\mathrm{n})=\mathbf{O}(\mathrm{n} \lg \mathrm{n})$
- Note not cost optimal, as RAM takes $\mathbf{O}(\mathrm{n})$
- Cost-Optimal EREW PRAM Prefix Algorithm
- In order to make the above algorithm optimal, we must reduce the cost by a factor of $\lg n$.
- In this case, it is easier to reduce the nr of processors by a factor of $\lg n$.
- Let $k=\lceil\lg n\rceil$ and $m=\lceil n / k\rceil$
- The input sequence $\mathrm{X}=\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}-1}\right)$ is partitioned into m subsequences Y_{0}, Y_{1}, \ldots, $\mathrm{Y}_{\mathrm{m}-1}$ with k items in each subsequence.
- While $\mathrm{Y}_{\mathrm{m}-1}$ may have fewer than k items, without loss of generality (WLOG) we may assume that it has k items here.
- The subsequences then have the form,

$$
\mathrm{Y}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i} * \mathrm{k}}, \mathrm{x}_{\mathrm{i} * \mathrm{k}+1}, \ldots, \mathrm{x}_{\mathrm{i} * \mathrm{k}+\mathrm{k}-1}\right)
$$

- Suffix computation is similar, but proceeds from right to left.
- A binary operation is assumed to take constant time, unless stated otherwise.
- The number of steps to compute $\mathrm{p}_{\mathrm{n}-1}$ has a lower bound of $\mathbf{W}(n)$ since $n-1$ operations are required.
- Previous prefix sum examples in reference [2]:
- Example 1.6 solves the prefix sum problem using the combinational circuit in Figure 1.4.
- Example 2.1 gives the usual RAM algorithm.
- Example 2.5 solves the prefix sum problem using a hypercube, as shown in Figure 2.21.
- Prefix Computation on PRAM can simulate both
- the hypercube prefix operation algorithm
- the combinational circuit computation.
with the same $\mathbf{O}(\lg n)$ running time.
- Discuss visual algorithm in Figure 4.1 (for $\mathrm{n}=8$)
- Same algorithm as given for hypercube and combinational circuit earlier.
- EREW PRAM Version: Assume PRAM has n processors, $\mathrm{P}_{0}, \mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}-1}$, and n is a power of 2 . Initially, P_{i} stores x_{i} in shared memory location s_{i} for $i=0,1, \ldots, n-1$.

Algorithm PRAM Prefix Computation (X, \oplus, \mathbf{S})

- Step 1: Each processor P_{i} computes the prefix sum of the sequence Y_{i} using the RAM prefix algorithm, and stores these intermediate results in $\mathrm{s}_{\mathrm{ik}}, \mathrm{s}_{\mathrm{ik}+1}, \ldots, \mathrm{~s}_{(\mathrm{i}+1) \mathrm{k}-1}$.
- Step 2: All m PEs execute the preceding PRAM prefix algorithm on the sequence $\left(\mathrm{s}_{\mathrm{k}-1}\right.$, $\mathrm{s}_{2 \mathrm{k}-1}, \ldots, \mathrm{~s}_{\mathrm{n}-1}$), replacing $\mathrm{s}_{\mathrm{ik}-1}$ with

$$
\mathrm{s}_{\mathrm{k}-1} \oplus \ldots \oplus \mathrm{~s}_{\mathrm{ik}-1}
$$

- Step 3: Finally, all P_{i} for $1 \leq i \leq m-1$ adjust their partial value sums for all but the final term in their partial sum subseqence by performing the computation

$$
\mathrm{s}_{\mathrm{ik}+\mathrm{j}} \leftarrow \mathrm{~s}_{\mathrm{ik}+\mathrm{j}} \oplus \mathrm{~s}_{\mathrm{ik}-1}
$$

for $1 \leq \mathrm{j} \leq \mathrm{k}-1$.

- Analysis:
- Step 1 takes $O(\lg n)=O(k)$ time.
- Step 2 takes $\mathbf{O}(\lg m)=\mathbf{O}(\lg n / k)$

$$
\begin{aligned}
& =\mathrm{O}(\lg \mathrm{n}-\lg \mathrm{k})=\mathbf{O}(\lg \mathrm{n}-\lg \lg \mathrm{n}) \\
& =\mathbf{O}(\lg \mathrm{n})=\mathbf{O}(\mathrm{k})
\end{aligned}
$$

- Step 3 takes $O(\mathrm{k})$ time.
- The overall time for this algorithm is $\mathbf{O}(\lg n)$ and its cost is $\mathbf{O}((\lg n) \times n /(\lg n))=\mathbf{O}(n)$
- See pseudocode version on pg 155 of [2].

§4.6 Array Packing

- Problem: Assume that we have
- an array of n elements, $\mathrm{X}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$
- Some array elements are marked (or distinguished).

The requirements of this problem are to

- pack the marked elements in the front part of the array.
- maintain the original order between the marked elements.
- place the remaining elements in the back of the array.
- also, maintain the original order between the unmarked elements.
- Sequential solution:
- Uses a technique similar to quicksort.
- Use two pointers q (initially 1) and r (initially n).
- Pointer q advances to the right until it hits an unmarked element.
- Next, r advances to the left until it hits a marked element.
- The elements at position q and r are switched and the process continues.

2. Computational Models
$\mathcal{E} I$

An Optimal PRAM Sort

- Two references are listed below. The book by JaJa may be referenced in the future and is a well-known textbook devoted to PRAM algorithm.
[8] Joseph JaJa, An Introduction to Parallel Algorithms, Addison Wesley, pgs 160-173.
[9]. R. Cole, Parallel Merge Sort, SIAM Journal on Computing, Vol. 17, 1988, pp. 770-785.
- Cole's Merge Sort (for PRAM)
- Cole's Merge Sort runs in $\mathrm{O}(\lg \mathrm{n})$ and requires $\mathrm{O}(\mathrm{n})$ processors, so it is cost optimal.
- The Cole sort is significantly more efficient than most (if not all) other PRAM sorts.
- A complete presentation for CREW PRAM is given in [8].
- JaJa states that the algorithm he presents can be modified to run on EREW, but that the details are non-trivial.
- Akl calls this sort PRAM SORT in [2] and gives a very high level presentation of the EREW version of this algorithm in Ch. 4.
- Currently, this sort is the best-known PRAM sort is usually the one cited when a cost-optimal PRAM sort using $\mathrm{O}(\mathrm{n})$ PEs is needed.
- This process terminates when $q \geq r$.
- The $\mathbf{O}(n)$ time is optimal.
- An EREW PRAM Algorithm for Array Packing
- Set s_{i} in P_{i} to 1 if x_{i} is marked and set $s_{i}=0$ otherwise.

2. Perform a prefix sum on S to obtain the destination $d_{i}=s_{i}$ for each marked x_{i}.
3. All PEs set $m=s_{n}$, the nr of marked elements.
4. Reset $s_{i}=0$ if x_{i} is marked and $s_{i}=1$ otherwise.
5. Perform a prefix sum on S and set $d_{i}=s_{i}+m$ for each unmarked x_{i}.
6. Each P_{i} copies array element x_{i} into address d_{i} in X .

- Algorithm analysis:
- Assume $\mathrm{n} / \lg (\mathrm{n})$ processors are used above.
- Each prefix sum required $\mathrm{O}(\lg \mathrm{n})$ time.
- The broadcast in Step 3 requires $O(\lg n)$ time, using a binary tree (in memory) or prefix sum.
(e.g., prefix sum on b^{\prime} 's with $b_{1}=a_{n}$ and $b_{i}=0$ for $1<i \leq n$)
- All and other steps require constant time.
- Runs in $\mathbf{O}(\lg n)$ time and is cost optimal.
- Note: There many applications for this algorithm.

2. Computational Models

- Comments about some other sorts for PRAM
- A work-optimal CREW PRAM algorithm that runs in $O((\lg n) \lg \lg n)$ time and uses $O(n)$ processors which is much simpler is given in JaJa's book (pg 158-160).
- Also, JaJa gives an $\mathrm{O}(\lg n)$ time randomized sort for CREW PRAM on pages 465-473.
- With high probability, this algorithm terminates in $\mathrm{O}(\lg n)$ time and requires $\mathrm{O}(\mathrm{n}$ $\lg n$) operations
- i.e., with high-probability, is work-optimal.
- Sorting is sometimes called the "queen of the algorithms":
- A speedup in the best-known sort for a parallel model usually results in a similar speedup other algorithms that use sorting.
- A Divide \& Conquer or Simulation Algorithm
- To be added from [2,Ch 5], [3,Ch 2], [7,Ch 30].
- Possible Candidates
- Merging two sorted lists [2,Ch 5] or [3]
- Searching an unsorted list
- Selection algorithm

Symbol Bar -- omit on printing

- $\oplus \times \mathrm{s}_{1}$ " \$ ' $\mathbf{O W} \rightarrow \leftarrow \geq \leq \wedge v \in \notin\lceil][\rfloor$

