
2. Computational Models

1

MODELS OF COMPUTATION
(Chapter 2)

• Models
– An abstract description of a real world entity
– Attempts to capture the essential features while

suppressing the less important details.
– Important to have a model that is both precise

and as simple as possible to support theoretical
studies of the entity modeled.

– If experiments or theoretical studies show the
model does not capture the important aspects
of the physical entity closely, then the model
should be refined.

– Many engineers will not accept an abstract
model of entity being studied, but insist on a
detailed model.
• Often reject a model if it does not capture

the lower level details of the physical entity.
• Model of Computation

– Describes a class of computers
– Allows algorithms to be written for a general

model rather than for a specific computer.
– Allows the advantages of various models to be

studied and compared.
– Important, since the life-time of specific

computers is quite short (e.g., 10 years).

2. Computational Models

2

Some Additional Networks

• References: [2,Akl, Ch 2], [3, Quinn, Ch 2-3]

• Shuffle Exchange

– Let n be a power of 2 and P0, P1, ... , Pn-1
denote the processors.

– A perfect-shuffle connection is a one-way
communication link that exists from

• Pi to P2i if i < n/2 and
• Pi to P2i+1-n if i ≥ n/2

– Alternately, a perfect-shuffle connection exists
between Pi and Pk if a left one-digit circular
rotation of i, expressed in binary, produces k.

– Its name is due to fact that if a deck of cards
were “shuffled perfectly”, the shuffle link of i
gives the final shuffled position of card i

• Example: See Figure 2.15.

– An exchange connection link is a two way link
that exists between Pi and Pi+1 when i is even.

– Figure 2.14 illustrates the shuffle & exchange
links for 8 processors.

– The reverse of a perfect shuffle link is called an
unshuffle link.

– A network with the shuffle, unshuffle, and
exchange connections is called a shuffle-
exchange network.

2. Computational Models

3

• Cube-Connected Cycles (or CCC)

– A problem with the hypercube network is the
large number of links each processor must
support when q is large.

– The CCC solves this problem by replacing each
node of the q-dimensional hypercube with a
ring of q processors, each connected to 3 PEs:

• its two neighbors in the ring

• one processor in the ring of a neighboring
hypercube node.

– Example: See Figure 2.18 in [2]

• Network Metrics: Recall Metrics for comparing
network topologies

– Degree

• The degree of network is the maximum
number of links incident on any processor.

• Each link uses a port on the processor, so
the most economical network has the lowest
degree

– Diameter

• The distance between two processors P and
Q is the number of links on the shortest path
from P to Q.

2. Computational Models

4

Comparison of Network Topologies (cont)

– The diameter of a network is the maximum
distance between pairs of processors.

– The bisection width of a network is the
minimum number of edges that must be cut to
divide the network into two halves (within one).

• Table 2.21in [2] (reproduced below) compares the
topologies of the networks we have discussed.

– See Table 3-1 of Quinn for additional details.

 Topology Degree Diameter Bis. W.

 ====================================

 Linear Array 2 O(n) 1

 Mesh 4 O() n

 Tree 3 O(lg n) 1

 Shuffle-Exchange 3 O(lg n)

 Hypercube O(lg n) O(lg n) 2d-1

 Cube-Con. Cycles 3 O(lg n) 2d-1

n

n

n

2. Computational Models

5

PRAM: Parallel Random Access Machine

• References:[2, Ch 2], [3, Ch 2], and [7, Ch 30]
– [7] “Intro to Algorithm”, Cormen, et.al., 1990

• The RAM Model (Random Access Machine)
– A memory with M locations. Size of M is as

large as needed.
– A processor operating under the control of a

sequential program. It can
• load data from memory
• store date into memory
• execute arithmetic & logical computations

on data.
– A memory access unit (MAU) that creates a

path from the processor to an arbitrary memory
location.

• Sequential Algorithm Steps
– A READ phase in which the processor reads

datum from a memory location and copies it
into a register.

– A COMPUTE phase in which a processor
performs a basic operation on data from one or
two of its registers.

– A WRITE phase in which the processor copies
the contents of an internal register into a
memory location.

2. Computational Models

6

• PRAM Model Description

– Let P1, P2 , ... , Pn be identical processors

– Assume these processors have a common
memory with M memory locations with M ≥ N.

– Each Pi has a MAU that allows it to access each
of the M memory locations.

– A processor Pi sends data to a processor Pk by
storing it in a memory location that Pk can read
at a later time.

– The model allows each processor to have its
own algorithm and to run asynchronously.

– In many applications, all processors run the
same algorithm synchronously.

• Restricted model called synchronous PRAM

• Algorithm steps have 3 or less phases
– READ Phase: Up to n processors read up to n

memory locations simultaneously.

– COMPUTE Phase: Up to n processors
perform basic arithmetic/logical operations
on their local data.

– WRITE phase: Up to n processors write
simultaneously into up to n memory
locations.

2. Computational Models

7

– Each processor knows its own ID and
algorithms can use processor IDs to control the
actions of the processors. (True for all models.)

• PRAM Memory Access Methods
– Exclusive Read (ER): Two or more processors

can not simultaneously read the same memory
location.

– Concurrent Read (CR): Any number of
processors can read the same memory location
simultaneously.

– Exclusive Write (EW): Two or more processors
can not write to the same memory location
simultaneously.

– Concurrent Write (CW): Any number of
processors can write to the same memory
location simultaneously.

• Variants of Concurrent Write:
– Priority CW: The processor with the highest

priority writes its value into a memory location.
– Common CW: Processors writing to a common

memory location succeed only if they write the
same value.

– Arbitrary CW: When more than one value is
written to the same location, any one of these
values (e.g., one with lowest processor ID) is
stored in memory

2. Computational Models

8

– Random CW: One of the processors is selected by
some random process to write its value into memory.

– Combining CW: The values of all the processors
trying to write to a memory location are combined
into a single value and stored into the memory
location.
• Some possible functions for combining

numerical values are SUM, PRODUCT,
MAXIMUM, MINIMUM.

• Some possible functions for combining boolean
values are AND, INCLUSIVE-OR,
EXCLUSIVE-OR, etc.

--
The RAM Model

• A memory with M locations. Size of M is as large as
needed.

• A processor operating under the control of a sequential
program. It can

– load data from memory
– store date into memory
– execute arithmetic & logical computations on data.

• A memory access unit (MAU) that creates a path from the
processor to an arbitrary memory location.

• Sequential Algorithm Steps
– A READ phase in which the processor reads datum from a

memory location and copies it into a register.
– A

2. Computational Models

9

PRAM ALGORITHMS

• Reference: Chapter 4 of [2, Akl], Chapter 30 of [7,
identified below], and Chapter 2 of [3, Quinn]
– [7] “Introduction to Algorithms” by Cormen,

Leisterson, and Rivest, First (older) edition, 1990,
McGraw Hill and MIT Press.

• Prefix computation application considered first
• EREW PRAM Model is assumed.
• A binary operation on a set S is a function

⊕:S¥S → S.
• Traditionally, the element ⊕(s1, s2) is denoted as

s1⊕ s1.
• The binary operations considered for prefix computations

will be assumed to be
– associative: (s1 ⊕ s2) ⊕ s3 = s1 ⊕ (s2 ⊕ s3)

• Examples
– Numbers: addition, multiplication, max, min.
– Strings: concatentation for strings
– Logical Operations: and, or, xor

• Note: ⊕ is not required to be commutative.
• Prefix Operations: Assume s0, s1, ... , sn-1 are in S. The

computation of p0, p1, ... ,pn-1 defined below is called
prefix computation:

p0 = s0
p1 = s0 ⊕ s1

.
pn-1 = s0 ⊕ s1 ⊕ ... ⊕ sn-1

2. Computational Models

10

• Suffix computation is similar, but proceeds from
right to left.

• A binary operation is assumed to take constant
time, unless stated otherwise.

• The number of steps to compute pn-1 has a lower
bound of W(n) since n-1 operations are required.

• Previous prefix sum examples in reference [2]:

– Example 1.6 solves the prefix sum problem
using the combinational circuit in Figure 1.4.

– Example 2.1 gives the usual RAM algorithm.

– Example 2.5 solves the prefix sum problem
using a hypercube, as shown in Figure 2.21.

• Prefix Computation on PRAM can simulate both

– the hypercube prefix operation algorithm

– the combinational circuit computation.

 with the same O(lg n) running time.

• Discuss visual algorithm in Figure 4.1 (for n=8)

– Same algorithm as given for hypercube and
combinational circuit earlier.

• EREW PRAM Version: Assume PRAM has n
processors, P0, P1 , ... , Pn-1, and n is a power of 2.
Initially, Pi stores xi in shared memory location si
for i = 0,1, ... , n-1.

2. Computational Models

11

for j = 0 to (lg n) -1, do

 for i = 2j to n-1 do

 h = i - 2j

 si
 = sh ⊕ si

 endfor

endfor

• Analysis:

– Running time is t(n) = O(lg n)

– Cost is c(n) = p(n) × t(n) = O(n lg n)

– Note not cost optimal, as RAM takes O(n)

• Cost-Optimal EREW PRAM Prefix Algorithm

– In order to make the above algorithm optimal,
we must reduce the cost by a factor of lg n.

– In this case, it is easier to reduce the nr of
processors by a factor of lg n.

– Let k = lg n and m = n/k

– The input sequence X = (x0, x1, ..., xn-1) is
partitioned into m subsequences Y0, Y1 ,,
Ym-1 with k items in each subsequence.

• While Ym-1 may have fewer than k items,
without loss of generality (WLOG) we may
assume that it has k items here.

– The subsequences then have the form,

 Yi = (xi*k, xi*k+1, ..., xi*k+k-1)

2. Computational Models

12

Algorithm PRAM Prefix Computation (X, ⊕,S)
– Step 1: Each processor Pi computes the prefix

sum of the sequence Yi using the RAM prefix
algorithm, and stores these intermediate results
in sik, sik+1 , ... , s(i+1)k-1.

– Step 2: All m PEs execute the preceding
PRAM prefix algorithm on the sequence (sk-1,
s2k-1 , ... , sn-1), replacing sik-1 with

sk-1 ⊕ ... ⊕ sik-1 .
– Step 3: Finally, all Pi for 1≤i≤m-1 adjust their

partial value sums for all but the final term in
their partial sum subseqence by performing the
computation

 sik+j ← sik+j ⊕ sik-1
for 1 ≤ j ≤ k-1.

• Analysis:
– Step 1 takes O(lg n) = O(k) time.
– Step 2 takes O(lg m) = O(lg n/k)

 = O(lg n- lgk) = O(lg n - lg lg n)
 = O(lg n) = O(k)

– Step 3 takes O(k) time.
– The overall time for this algorithm is O(lg n)

and its cost is O((lg n) × n/(lg n)) = O(n)
• See pseudocode version on pg 155 of [2].

2. Computational Models

13

§4.6 Array Packing

• Problem: Assume that we have

– an array of n elements, X = {x1, x2, ... , xn}

– Some array elements are marked (or
distinguished).

The requirements of this problem are to

– pack the marked elements in the front part of
the array.

– maintain the original order between the marked
elements.

– place the remaining elements in the back of the
array.

– also, maintain the original order between the
unmarked elements.

• Sequential solution:

– Uses a technique similar to quicksort.

– Use two pointers q (initially 1) and r (initially
n).

– Pointer q advances to the right until it hits an
unmarked element.

– Next, r advances to the left until it hits a
marked element.

– The elements at position q and r are switched
and the process continues.

2. Computational Models

14

– This process terminates when q ≥ r.

– The O(n) time is optimal.

• An EREW PRAM Algorithm for Array Packing

– Set si in Pi to 1 if xi is marked and set si = 0
otherwise.

2. Perform a prefix sum on S to obtain the
destination di = si for each marked xi .

3. All PEs set m = sn , the nr of marked elements.

4. Reset si= 0 if xi is marked and si = 1 otherwise.

5. Perform a prefix sum on S and set di = si + m
for each unmarked xi .

6. Each Pi copies array element xi into address di
in X.

• Algorithm analysis:

– Assume n/lg(n) processors are used above.

– Each prefix sum required O(lg n) time.

– The broadcast in Step 3 requires O(lg n) time,
using a binary tree (in memory) or prefix sum.

(e.g., prefix sum on b’s with b1= an and bi= 0 for 1< i ≤ n)

– All and other steps require constant time.

– Runs in O(lg n) time and is cost optimal.

• Note: There many applications for this algorithm.

2. Computational Models

15

An Optimal PRAM Sort

• Two references are listed below. The book by JaJa
may be referenced in the future and is a well-known
textbook devoted to PRAM algorithm.

[8] Joseph JaJa, An Introduction to Parallel
Algorithms, Addison Wesley, pgs 160-173.

[9]. R. Cole, Parallel Merge Sort, SIAM Journal
on Computing, Vol. 17, 1988, pp. 770-785.

• Cole’s Merge Sort (for PRAM)

– Cole’s Merge Sort runs in O(lg n) and requires
O(n) processors, so it is cost optimal.

– The Cole sort is significantly more efficient
than most (if not all) other PRAM sorts.

– A complete presentation for CREW PRAM is
given in [8].

• JaJa states that the algorithm he presents can
be modified to run on EREW, but that the
details are non-trivial.

• Akl calls this sort PRAM SORT in [2] and
gives a very high level presentation of the
EREW version of this algorithm in Ch. 4.

– Currently, this sort is the best-known PRAM
sort is usually the one cited when a cost-optimal
PRAM sort using O(n) PEs is needed.

2. Computational Models

16

• Comments about some other sorts for PRAM

– A work-optimal CREW PRAM algorithm that
runs in O((lg n) lg lg n) time and uses O(n)
processors which is much simpler is given in
JaJa’s book (pg 158-160).

– Also, JaJa gives an O(lg n) time randomized
sort for CREW PRAM on pages 465-473.

• With high probability, this algorithm
terminates in O(lg n) time and requires O(n
lg n) operations

– i.e., with high-probability, is work-optimal.

– Sorting is sometimes called the “queen of the
algorithms”:

• A speedup in the best-known sort for a
parallel model usually results in a similar
speedup other algorithms that use sorting.

• A Divide & Conquer or Simulation Algorithm

– To be added from [2,Ch 5], [3,Ch 2], [7,Ch 30].

– Possible Candidates

• Merging two sorted lists [2,Ch 5] or [3]

• Searching an unsorted list

• Selection algorithm

2. Computational Models

17

Symbol Bar -- omit on printing

• ⊕ × s1 " $ 'O W → ← ≥ ≤ ∧ ∨ ∈ ∉    

