MODELS OF COMPUTATION
(Chapter 2)

Models

An abstract description of a real world entity

Attempts to capture the essential features while
suppressing the less important details.

Important to have a model that is both precise
and as simple as possible to support theoretical
studies of the entity modeled.

If experiments or theoretical studies show the
model does not capture the important aspects
of the physical entity closely, then the model
should be refined.

Many engineers will not accept an abstract
model of entity being studied, but insist on a
detailed model.

+ Often reject a model if it does not capture

the lower level details of the physical entity.

Model of Computation

Describes a class of computers

Allows algorithms to be written for a general
model rather than for a specific computer.

Allows the advantages of various models to be
studied and compared.

Important, since the life-time of specific
computers is quite short (e.g., 10 years).

2. Computational Models

Some Additional Networks
References: [2,Akl, Ch 2], [3, Quinn, Ch 2-3]
Shuffle Exchange

— Let nbe a power of 2 and Py, Py, ...
denote the processors.

’Pn-]

— A perfect-shuffle connection is a one-way
communication link that exists from
* P;to P,;ifi< n/2 and
* PitoPy,; ,ifi=n/2
— Alternately, a perfect-shuffle connection exists
between P, and P, if a left one-digit circular
rotation of 7, expressed in binary, produces .
— Its name is due to fact that if a deck of cards
were “shuffled perfectly”, the shuffle link of i
gives the final shuffled position of card i
» Example: See Figure 2.15.
— An exchange connection link is a two way link
that exists between P; and P;, ; when i is even.
— Figure 2.14 illustrates the shuftle & exchange
links for 8 processors.
— The reverse of a perfect shuffle link is called an
unshuffle link.
— A network with the shuffle, unshuffle, and
exchange connections is called a shuffle-
exchange network.

2. Computational Models

Cube-Connected Cycles (or CCC)

A problem with the hypercube network is the
large number of links each processor must
support when ¢ is large.

The CCC solves this problem by replacing each
node of the g-dimensional hypercube with a
ring of g processors, each connected to 3 PEs:

* its two neighbors in the ring

* one processor in the ring of a neighboring
hypercube node.

Example: See Figure 2.18 in [2]

Network Metrics: Recall Metrics for comparing
network topologies

Degree

* The degree of network is the maximum
number of links incident on any processor.

+ Each link uses a port on the processor, so
the most economical network has the lowest
degree

Diameter

* The distance between two processors P and
Q is the number of links on the shortest path
from P to Q.

2. Computational Models

Comparison of Network Topologies (cont)

— The diameter of a network is the maximum
distance between pairs of processors.

— The bisection width of a network is the
minimum number of edges that must be cut to
divide the network into two halves (within one).

Table 2.21in [2] (reproduced below) compares the
topologies of the networks we have discussed.

— See Table 3-1 of Quinn for additional details.

Topology Degree Diameter Bis. W.
Linear Array 2 O(n) 1
Mesh 4 OWn) n
Tree 3 O(lgn) 1
Shuffle-Exchange 3 O(lgn) n

Hypercube O(gn) O(gn) 2%
Cube-Con. Cycles 3 O(lgn) 20-1

2. Computational Models

PRAM: Parallel Random Access Machine

References:[2, Ch 2], [3, Ch 2], and [7, Ch 30]
— [7] “Intro to Algorithm”, Cormen, et.al., 1990

The RAM Model (Random Access Machine)
— A memory with M locations. Size of M is as
large as needed.
— A processor operating under the control of a
sequential program. It can
* load data from memory
* store date into memory
+ execute arithmetic & logical computations
on data.

— A memory access unit (MAU) that creates a
path from the processor to an arbitrary memory
location.

Sequential Algorithm Steps

— A READ phase in which the processor reads
datum from a memory location and copies it
into a register.

— A COMPUTE phase in which a processor
performs a basic operation on data from one or
two of its registers.

— A WRITE phase in which the processor copies
the contents of an internal register into a
memory location.

2. Computational Models

* PRAM Model Description
— Let Py, P,, ..., P, be identical processors

— Assume these processors have a common
memory with M memory locations with M = N.

— Each P; has a MAU that allows it to access each
of the M memory locations.

— A processor P; sends data to a processor P, by
storing it in a memory location that Py can read
at a later time.

— The model allows each processor to have its
own algorithm and to run asynchronously.

— In many applications, all processors run the
same algorithm synchronously.

» Restricted model called synchronous PRAM
* Algorithm steps have 3 or less phases

— READ Phase: Up to n processors read up to n
memory locations simultaneously.

— COMPUTE Phase: Up to n processors
perform basic arithmetic/logical operations
on their local data.

— WRITE phase: Up to n processors write
simultaneously into up to n memory
locations.

2. Computational Models

— Each processor knows its own ID and
algorithms can use processor IDs to control the
actions of the processors. (True for all models.)

PRAM Memory Access Methods

— Exclusive Read (ER): Two or more processors
can not simultaneously read the same memory
location.

— Concurrent Read (CR): Any number of
processors can read the same memory location
simultaneously.

— Exclusive Write (EW): Two or more processors
can not write to the same memory location
simultaneously.

— Concurrent Write (CW): Any number of
processors can write to the same memory
location simultaneously.

Variants of Concurrent Write:

— Priority CW: The processor with the highest
priority writes its value into a memory location.

— Common CW: Processors writing to a common
memory location succeed only if they write the
same value.

— Arbitrary CW: When more than one value is
written to the same location, any one of these
values (e.g., one with lowest processor ID) is
stored in memory

2. Computational Models

— Random CW: One of the processors is selected by
some random process to write its value into memory.

— Combining CW: The values of all the processors
trying to write to a memory location are combined
into a single value and stored into the memory
location.

* Some possible functions for combining
numerical values are SUM, PRODUCT,
MAXIMUM, MINIMUM.

* Some possible functions for combining boolean
values are AND, INCLUSIVE-OR,
EXCLUSIVE-OR, etc.

The RAM Model
* A memory with M locations. Size of M is as large as
needed.
* A processor operating under the control of a sequential
program. It can
— load data from memory
— store date into memory
— execute arithmetic & logical computations on data.
* A memory access unit (MAU) that creates a path from the
processor to an arbitrary memory location.
» Sequential Algorithm Steps

— A READ phase in which the processor reads datum from a
memory location and copies it into a register.

- A

2. Computational Models

PRAM ALGORITHMS

Reference: Chapter 4 of [2, Akl], Chapter 30 of [7,
identified below], and Chapter 2 of [3, Quinn]

— [7] “Introduction to Algorithms” by Cormen,
Leisterson, and Rivest, First (older) edition, 1990,
McGraw Hill and MIT Press.

Prefix computation application considered first
EREW PRAM Model is assumed.
A binary operation on a set S is a function
@:S¥S — S.
Traditionally, the element @(s,, s,) is denoted as
$1®sy.
The binary operations considered for prefix computations
will be assumed to be
— associative: (5,® s,) Ds;= 5, D (s, Ds3)
Examples
— Numbers: addition, multiplication, max, min.
— Strings: concatentation for strings
— Logical Operations: and, or, xor
Note: @ is not required to be commutative.

Prefix Operations: Assume s, s, ..., s, ; are in S. The
computation of p, p;, ... ,p,_; defined below is called
prefix computation:

Po = So
P =5)®s,
Pn1=Sp@8®...®s,

2. Computational Models

Suffix computation is similar, but proceeds from
right to left.

A binary operation is assumed to take constant
time, unless stated otherwise.

The number of steps to compute p,,_; has a lower
bound of W(n) since n-1 operations are required.

Previous prefix sum examples in reference [2]:

— Example 1.6 solves the prefix sum problem
using the combinational circuit in Figure 1.4.

— Example 2.1 gives the usual RAM algorithm.

— Example 2.5 solves the prefix sum problem
using a hypercube, as shown in Figure 2.21.

Prefix Computation on PRAM can simulate both
— the hypercube prefix operation algorithm
— the combinational circuit computation.

with the same O(Ig n) running time.

Discuss visual algorithm in Figure 4.1 (for n=8)

— Same algorithm as given for hypercube and
combinational circuit earlier.

EREW PRAM Version: Assume PRAM has n
processors, Py, Py, ..., P, |, and nis a power of 2.
Initially, P; stores x; in shared memory location s;
fori=0,1, ..., n-1.

2. Computational Models

forj=0 to (Ign)-1, do
for i=2to n-1do
h=i-2
$;= s, @
endfor
endfor
Analysis:
— Running time is t(n) = O(lg n)
— Costis c¢(n)=pn) x t(n) = 0(n Ig n)
— Note not cost optimal, as RAM takes O(n)
Cost-Optimal EREW PRAM Prefix Algorithm

— In order to make the above algorithm optimal,
we must reduce the cost by a factor of g n.

— In this case, it is easier to reduce the nr of
processors by a factor of Ig n.

— Letk=[lgn]and m = [n/k]

— The input sequence X = (X, Xy, ..., X,.1) 18
partitioned into m subsequences Y, Y, ,,
Y ,,.; with k items in each subsequence.

* While Y, , may have fewer than k items,
without loss of generality (WLOG) we may
assume that it has k items here.

— The subsequences then have the form,

Yi = (il Ximict 15 -+ Xieicrkeo1)

2. Computational Models

Algorithm PRAM Prefix Computation (X, ®,S)

— Step 1: Each processor P; computes the prefix
sum of the sequence Y; using the RAM prefix
algorithm, and stores these intermediate results
- Sis Sik+] 5 oo+ 5 S(i+1)k-1-

— Step 2: All m PEs execute the preceding
PRAM prefix algorithm on the sequence (sy_q,

$9k-1 » -+ » Sp-1)> T€placing s;; | with
Sk-1 ®..@D Sik-1 -

— Step 3: Finally, all P, for 1<i=sm-1 adjust their
partial value sums for all but the final term in
their partial sum subseqgence by performing the
computation

Sik+j < Sik+j D Sik-1
for 1 =j=k-1.

Analysis:
Step 1 takes O(Ig n) = O(k) time.
Step 2 takes O(lg m) = O(Ig n/k)

=0O(lg n- 1gk) =0(lg n - 1g Ig n)

=0(lgn) =0(k)
Step 3 takes O(k) time.
The overall time for this algorithm is O(lg n)
and its cost is O((lg n) x n/(Ig n)) = O(n)
See pseudocode version on pg 155 of [2].

2. Computational Models 4

§4.6 Array Packing

Problem: Assume that we have
— an array of n elements, X = {X, X, ..., X}
— Some array elements are marked (or
distinguished).
The requirements of this problem are to

— pack the marked elements in the front part of
the array.

— maintain the original order between the marked
elements.

— place the remaining elements in the back of the
array.

— also, maintain the original order between the
unmarked elements.

Sequential solution:
— Uses a technique similar to quicksort.
— Use two pointers ¢ (initially 1) and 7 (initially
n).
— Pointer g advances to the right until it hits an
unmarked element.

— Next, r advances to the left until it hits a
marked element.

— The elements at position ¢ and » are switched
and the process continues.

2. Computational Models

— This process terminates when g = r.

— The O(n) time is optimal.

An EREW PRAM Algorithm for Array Packing

— Sets;in P; to 1 if x; is marked and set s; = 0
otherwise.

2. Perform a prefix sum on S to obtain the
destination d; = s; for each marked x; .

3. All PEs set m = s, the nr of marked elements.
4. Reset s;= 0 if x; is marked and s; = 1 otherwise.

5. Perform a prefix sum on S and set d; = s, + m
for each unmarked x; .

6. Each P, copies array element x; into address d;
in X.
Algorithm analysis:
— Assume n/lg(n) processors are used above.
— Each prefix sum required O(Ig n) time.

— The broadcast in Step 3 requires O(lg n) time,
using a binary tree (in memory) or prefix sum.

(e.g., prefix sum on b’s with b,= a_and b= 0 for 1< i < n)
— All and other steps require constant time.
— Runs in O(Ig n) time and is cost optimal.
Note: There many applications for this algorithm.

2. Computational Models

An Optimal PRAM Sort

Two references are listed below. The book by JaJa
may be referenced in the future and is a well-known
textbook devoted to PRAM algorithm.

[8] Joseph JaJa, An Introduction to Parallel
Algorithms, Addison Wesley, pgs 160-173.
[9]. R. Cole, Parallel Merge Sort, SIAM Journal
on Computing, Vol. 17, 1988, pp. 770-785.

Cole’s Merge Sort (for PRAM)
— Cole’s Merge Sort runs in O(lg n) and requires
O(n) processors, so it is cost optimal.
— The Cole sort is significantly more efficient
than most (if not all) other PRAM sorts.
— A complete presentation for CREW PRAM is
given in [8].

* JaJa states that the algorithm he presents can
be modified to run on EREW, but that the
details are non-trivial.

* AKkl calls this sort PRAM SORT in [2] and
gives a very high level presentation of the
EREW version of this algorithm in Ch. 4.

— Currently, this sort is the best-known PRAM
sort is usually the one cited when a cost-optimal
PRAM sort using O(n) PEs is needed.

2. Computational Models

Comments about some other sorts for PRAM
— A work-optimal CREW PRAM algorithm that
runs in - O((lg n) 1g 1g n) time and uses O(n)
processors which is much simpler is given in
JaJa’s book (pg 158-160).
— Also, JaJa gives an O(lg n) time randomized
sort for CREW PRAM on pages 465-473.

» With high probability, this algorithm
terminates in O(lg n) time and requires O(n
lg n) operations

— 1.e., with high-probability, is work-optimal.
— Sorting is sometimes called the “queen of the
algorithms”:

* A speedup in the best-known sort for a
parallel model usually results in a similar
speedup other algorithms that use sorting.

A Divide & Conquer or Simulation Algorithm
— To be added from [2,Ch 5], [3,Ch 2], [7,Ch 30].
— Possible Candidates
* Merging two sorted lists [2,Ch 5] or [3]
* Searching an unsorted list
* Selection algorithm

2. Computational Models 91

Symbol Bar -- omit on printing

© ®Oxs3"$'OW—-<==<aveEE[]]]

2. Computational Models

