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Motivation For MASC Model

• The STARAN Computer (Goodyear Aerospace,
early 1970’s) provided an architectural model for
associative computing.

• MASC provides a ‘definition’ for associative
computing.

• Associative computing extends the data parallel
paradigm to a complete computational model.

• Provides a platform for developing and comparing
associative, MSIMD (Multiple SIMD) type
programs.

• MASC is studied locally as a computational model
(Baker), programming model (Potter), and
architectural model (Baker, Potter, & Walker).

• Provides a practical model that supports massive
parallelism.

• Model can also support intermediate parallel
applications (e.g., multimedia computation,
interactive graphics) using on-chip technology.

• Model addresses fact that most parallel applications
are data parallel in nature,  but contain several
regions where significant branching occurs.

– Normally,  at most eight active sub-branches.

• Provides a hybrid data-parallel, control-parallel
model that can be compared to other parallel
models.
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• • •

• Basic Components

– An array of cells, each consisting of a PE and
its local memory

– An interconnection network between the cells

– One or more instruction streams (ISs)

– An IS communications network

• MASC is a MSIMD model that supports

– both data and control parallelism

– associative programming.

• MASC(n, j)  is a MASC model with n PEs and j ISs
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Basic Properties of MASC

• Instruction Streams or ISs

– A processor with a bus to each cell

– Each IS has a copy of the program and can
broadcast instructions to cells in unit time

– NOTE: MASC(n,1) is called ASC

• Cell Properties

– Each cell consists of a PE and its local memory

– All cells listen to only one IS

– Cells can switch ISs in unit time, based on a
data test.

– A cell can be active, inactive, or idle

• Inactive cells listen but do not execute IS
commands

• Idle cells contain no useful data and are
available for reassignment

• Responder Processing

– An IS can detect if a data test is satisfied by any
of its cells (each called a responder) in
constant time

– An IS can select (or pick one) arbitrary
responder in constant time.

– Justified by implementations using a resolver
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• Constant Time Global Operations (across PEs with
a common IS)

– Logical OR and AND of binary values

– Maximum and minimum of numbers

– Associative searches (see next slide)

• Communications

– There are three real or virtual networks

• PE communications network

• IS broadcast/reduction network

• IS communications network

– Communications can be supported by various
techniques

• actual networks such as 2D mesh

• bus networks

• shared memory

• Control Features

– PEs, ISs, and Networks operate synchronously,
using the same clock

– Control Parallelism used to coordinate the
multiple ISs.

Reference: An Associative Computing Paradigm,
IEEE Computer, Nov. 1994, Potter, Baker, et al.,
pg 19-26. (Note: MASC is called ASC in this
article.)
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Characteristics of Associative
Programming

• Consistent use of data parallel programming

• Consistent use of global associative searching &
responder processing

• Regular use of the constant time global reduction
operations: AND, OR, MAX, MIN

• Data movement using IS bus broadcasts and IS
fork and join  operations to minimize the use of the
PE network.

• Tabular representation of data

• Use of searching instead of sorting

• Use of searching instead of pointers

• Use of searching instead of ordering provided by
linked lists, stacks, queues

• Promotes an intuitive type of programming that
promotes high productivity

• Uses structure codes (i.e., numeric representation)
to represent data structures such as trees, graphs,
embedded lists, and matrices.

– See Nov. 1994 IEEE Computer article.

– Also, see Associative  Computing by Potter



MASC Model

9

Languages Designed for MASC

• ASC was designed by Jerry Potter for MASC(n,1)

– Based on C and Pascal

– Initially designed as a parallel language.

– Avoids compromises required to extend an
existing sequential language

• E.g., avoids unneeded sequential constructs
such as pointers

– Implemented on several SIMD computers

• Goodyear Aerospace’s STARAN

• Goodyear/Loral’s ASPRO

• Thinking Machine’s CM-2

• WaveTracer

• ACE is a higher level language that uses natural
language syntax; e.g., plurals, pronouns.

• Anglish is an ACE variant that uses an English-like
grammar.

• An OOPs version of ASC for MASC(n,k) is
planned (by Potter and his students)

• Language Refs: www.mcs.kent.edu/~potter/ and
Jerry Potter, Associative Computing - A
Programming Paradigm for Massively Parallel
Computers, Plenum Publishing Company, 1992
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Algorithms and Programs Implemented in
ASC

• A wide range of algorithms implemented in ASC
without use of PE network

– Graph Algorithms

• minimal spanning tree

• shortest path

• connected components

– Computational Geometry Algorithms

• convex hull algorithms (Jarvis March,
Quickhull, Graham Scan, etc)

• Dynamic hull algorithms

– String Matching Algorithms

• all exact substring matches

• all exact matches with “don’t care” (i.e.,
wild card) characters.

– Algorithms for NP-complete problems

• traveling salesperson

• 2-D knapsack.

– Data Base Management Software

• associative data base

• relational data base
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(Cont) ASC Algorithms and Programs

– A Two Pass Compiler for ASC

• first pass

• optimization phase

– Two Rule-Based Inference Engines

•  OPS-5 interpreter

• PPL (Parallel Production Language
interpreter)

– A Context Sensitive Language Interpreter

• (OPS-5 variables force context sensitivity)

– An associative PROLOG interpreter

• Numerous Programs in ASC  using a PE
network

– 2-D Knapsack Algorithm using a 1-D mesh

– Image Processing algorithms using 1-D mesh

– FFT using Flip Network

– Matrix Multiplication using 1-D mesh

– An Air Traffic Control Program using Flip
Network

• Demonstrated using live data at Knoxville in
mid 70’s.
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Preliminaries for MST Algorithm

• Next, a “data structure” level presentation of Prim’s
algorithm for the MST is given.

• The data structure used is illustrated in the example
in Figure 6 on slide 15.

– Figure 6 is from the basic paper in Nov. 1994
IEEE Computer (see slide 6).

• There are two types of variables for the ASC
model, namely

– the parallel variables (i.e., ones for the PEs)

– the scalar variables (ie., the ones for the control
unit).

– Scalar variables are essentially global variables.

• Can replace each with a parallel variable.

• In order to distinguish between them, the parallel
variables names end with a “$” symbol.

• Each step in this algorithm is constant.

• One MST edge is selected during each pass through
the loop in this algorithm.

• Since a spanning tree has n-1 edges, the running
time of this algorithm is O(n).

• Since the sequential running time of the Prim MST
algorithm is O(n 2) and this time is optimal, this
parallel implementation is cost-optimal.
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Algorithm: ASC-MSP-PRIM(root)

• Initially assign any node to root.

• All processors set

– candidate$ to “waiting”
– current-best$ to ∞

– the candidate field for the root node to “no”

• All processors whose distance d from their node to
root node is finite do

– Set their candidate$ field to “yes

– Set their parent$ field to root.

– Set current_best$ = d.

•  While the candidate field of some processor is
“yes”,

– Restrict the active processors to those
responding and (for these processors) do

• Compute the minimum value x of
current_best$.

• Restrict the active processors to those with
current_best$ = x and do

– pick an active processor, say one with
node y.

» Set the candidate$  value of this
processor to “no”

– Set the scalar variable next-node to y.
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– If the value z in the next_node field of a
processor is less than current_best$, then

» Set current_best$ to z.

– Set parent$ to next_node

• For all processors, if candidate$ is “waiting” and
the distance of its node from next_node is finite,
then

– Set candidate$ to “yes”

– Set parent$ to next-node

– Set current_best$ to the distance of its node
from next_node.

COMMENTS:

• Figure 6 on the next slide shows the data structure
used in the preceding ASC algorithm for MST

• Next slide is from the Nov 1994 IEEE Computer
paper referenced earlier.

– This slide also gives a compact, data-structures
level pseudo-code description for this algorithm

• Pseudo-code illustrates Potter’s use of
pronouns (e.g., them)

• The mindex function returns the index of a
processor holding the minimal value.

– This MST pseudo-code is much simpler than
data-structure level sequential MST pseudo-
codes (e.g., Sara Baase’s algorithm textbook).
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Slides from Maher’s Work Go Here

• First slide of Figure 6 in the IEEE Computer article
on associative minimal spanning tree goes here.
(Don’t number this slide, as it would be slide 15.

• Next use slides 15 - 23 from my general
presentations (prepared by Maher) called “An
Associative Model of Computation”. It is in latex
and in directory ~jbaker/slides/matwah in UNIX
directory.

• I am adding blank slides 16-23 to keep numbering
correct.

• Work starting with slide 24 on simulations between
enhanced meshes and MASC in dissertation work
of  Mingxian Jin.
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Previous MASC Simulation

• MASC Simulation of  PRAM

– MASC(n,j) can simulate priority CRCW
PRAM(n,m) in O(min{n/j, m/j}) with high
probability.

– MASC(n,1) [or ASC] can simulate priority
CRCW with a constant number of global
memory locations in constant time

• This result is stronger than it first appears

• Some CRCW algorithms only require a
constant nr of global memory locations

– A reverse simulation of MASC by Combining
CRCW PRAM result will be in the dissertation
of Mingxian Jin

• Self-simulation of MASC

– Provides an efficient algorithm for MASC to
efficiently simulate a larger MASC - with more
PEs and/or ISs.

– Establishes that MASC is highly scalable

– MASC(n,j) can simulate MASC(N,J) in O(N/n
+ J) extra time and O(N/n + J) extra memory.
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The Enhanced Mesh, MMB

• Enhanced meshes are basic mesh models
augmented with fixed or reconfigurable buses

– At most one PE on a bus can broadcast to
remaining PEs during one step.

• Best-known fixed bus example:

– Mesh with multiple broadcasting (MMB)

– Standard 2-D mesh

– Row and column bus enhancements

– Broadcasts can occur along only row or column
buses (but not both) in one step
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The Reconfigurable Enhanced Mesh RM•For all636configurable bus models, buses are createddynamically during execution•Best known example:–General Reconfigurable Mesh (RM)–Each PE has four ports called N,S, E, W (oftencalled “NEWS”)–In one step, each PE can set the connections ofits ports, based on local data–At most two disjoint pairs of ports can beconnected at any time– O ne such connection is the adjacent pairs,                       { { N , E } ,  { W , S } } .

MASC Model27Simulation Preliminaries• R easons to simulate other models us ing MASC– A llows a better understanding of the power ofMASC–Provides a simulation algorithm that can beused to convert algorithms designed for the
other model to MASC•Basic Assumption Used in th e Simulations–MASC(n,        )  h a s  a                  m e s h  P E network with row-major ordering– T he enhanced meshes hav e a 2D mesh with thesame size and ordering– E ach PE in MASC has the same com putationalpower as an enhanced m esh PE–The MASC buses have the same pow er as thebuses of the enhanced mes h–Word length of both models are  ��lg(n)��.

– E ach PE in MASC knows its position in the 2Dmesh.

nn×nMASC Model28Simulation Mappings between MASC &
Enhanced Meshes
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Simulation of MMB with MASC

• Since both models have identical 2D meshes, these
do not need to be simulated

• Since the power of PEs in respective models are
identical, their local computations are not simulated

• To simulate a MMB row broadcast on the MASC,

– All PEs switch to their assigned row IS

– The IS for each row checks to see if there is a
PE that wishes to broadcast

– If true, the IS broadcasts this value to all of its
PEs (i.e., the ones on its assigned row).

• Simulation of a MMB column broadcast is similar

• The running time is O(1)

• There are examples that show the MASC model is
strictly more powerful than the MMB model

Theorem 1.

• MASC(n, j) with a 2-D mesh is strictly more
powerful than a                MMB for j = Ω(     ).

• An algorithm for a               MMB can be executed
on MASC(n, j) with  j=Ω(     ) and a 2-D mesh with
a running time at least fast as the MMB time.

nn × n

n
nn ×
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Simulation of MASC by MMB

• PE(1,1) stores a copy of the program and simulates
the        ISs sequentially.

• Each instruction stream command or datum is first
sent by P(1,1) to the PEs in the first column.

• Next, the PEs in the first column broadcast this
command or datum along the rows to all PEs.

• Each MMB processor uses two registers, channel
and status, to decide whether or not to execute the
current instruction.
– channel records which IS the processor is assigned to
– status records whether PE is active, inactive, etc

• The simulation of       simultaneous broadcasts of
ISs takes O(      ) time.

• A local computation, memory access, or a data
movement along local links are identical in the two
models and require O(1) time.

• The execution of a global reduction operator OR,
AND, MAX, MIN takes O(       ) using an optimal
MMB algorithm.

• Since the global reduction operators may be
computed for  O(     )   ISs,  an upper bound is
O(               ) or O(        ).

Theorem 3.
• MASC(n,      ) with a 2-D mesh can be simulated by

a                MMB  in O(       ) time with O(     ) extra
memory
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