
1
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Parallel Computers 

The Demand for Computational Speed

Continual demand for greater computational speed from a computer system than is
currently possible.

Areas requiring great computational speed include numerical modeling and simulation of
scientific and engineering problems. Computations must be completed within a “reason-
able” time period.

Grand Challenge Problems.

A grand challenge problem is one that cannot be solved in a reasonable amount of time with
today’s computers. Obviously, an execution time of 10 years is always unreasonable. 

Examples: Modeling large DNA structures, global weather forecasting, modeling motion
of astronomical bodies,

 Weather Forecasting

Atmosphere is modeled by dividing it into three-dimensional regions or cells. The calcula-
tions of each cell are repeated many times to model the passage of time.

Suppose we consider the whole global atmosphere divided into cells of size 1 mile × 1 mile
× 1 mile to a height of 10 miles (10 cells high) -about 5 × 108 cells.

Suppose each calculation requires 200 floating point operations. In one time step, 1011

floating point operations are necessary.

If we were to forecast the weather over 10 days using 10-minute intervals, a computer
operating at 100 Mflops (108 floating point operations/s) would take 107 seconds or over
100 days to perform the calculation.

To perform the calculation in 10 minutes would require a computer operating at 1.7 Tflops
(1.7 × 1012 floating point operations/sec). 

2
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Figure 1.1Astrophysical N-body 
simulation by Scott Linssen (undergraduate 
University of North Carolina at Charlotte 
[UNCC] student).

Modeling Motion of Astronomical Bodies

Predicting the motion of the astronomical bodies in space.

Each body is attracted to each other body by gravitational forces.

Movement of each body can be predicted by calculating the total force experienced by the
body.

If there are N bodies, there will be N − 1 forces to calculate for each body, or approximately
N2 calculations, in total.

After determining the new positions of the bodies, the calculations must be repeated. 

A galaxy might have, say, 1011 stars. This suggests 1022 calculations that have to be
repeated.

Even if each calculation could be done in 1µs (10−6 seconds, an extremely optimistic
figure, it would take 109 years for one iteration using the N2 algorithm and almost a year
for one iteration using the Nlog2N efficient approximate algorithm.



3
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Parallel Computers and Programming

Using multiple processors operating together on a single problem.

The overall problem is split into parts, each of which is performed by a separate processor
in parallel. 

Not a new idea; in fact it is a very old idea.

Gill writes about parallel programming in 1958 :

“... There is therefore nothing new in the idea of parallel programming, but its application
to computers. The author cannot believe that there will be any insuperable difficulty in
extending it to computers. It is not to be expected that the necessary programming tech-
niques will be worked out overnight. Much experimenting remains to be done. After all, the
techniques that are commonly used in programming today were only won at the cost of con-
siderable toil several years ago. In fact the advent of parallel programming may do
something to revive the pioneering spirit in programming which seems at the present to be
degenerating into a rather dull and routine occupation ...”

Gill, S. (1958), “Parallel Programming,” The Computer Journal, vol. 1, April, pp. 2-10.

Notwithstanding the long history, Flynn and Rudd (1996) write that “the continued drive
for higher- and higher-performance systems … leads us to one simple conclusion: the
future is parallel.” We concur.

4
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Figure 1.2Conventional computer having 
a single processor and memory.

Main memory

Processor

Instructions (to processor)
Data (to or from processor)

Types of Parallel Computers

A conventional computer consists of a processor executing a program stored in a (main)

memory:

Each main memory location in the memory in all computers is located by a number
called its address. Addresses start at 0 and extend to 2n − 1 when there are n bits (binary
digits) in the address.



5
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Figure 1.3Traditional shared memory 
multiprocessor model. Processors

Interconnection
network

Memory modules
One
address
space

Shared Memory Multiprocessor System

A natural way to extend the single processor model is to have multiple processors connect-
ed to multiple memory modules, such that each processor can access any memory module
in a so-called shared memory configuration:

6
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Programming Shared Memory Multiprocessor

Involves having executable code stored in the memory for each processor to execute. Can
be done in different ways:

Parallel Programming Languages

Designed with special parallel programming constructs and statements that allow shared
variables and parallel code sections to be declared.

Then the compiler is responsible for producing the final executable code from the program-
mer’s specification. 

Threads

Threads can be used that contain regular high-level language code sequences for individual
processors. These code sequences can then access shared locations.



7
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Processor

Interconnection
network

Local

Computers

Messages

Figure 1.4Message-passing 
multiprocessor model (multicomputer).

memory

Message-Passing Multicomputer

Complete computers connected through an interconnection network:

Programming

Still involves dividing the problem into parts that are intended to be executed
simultaneously to solve the problem

Common approach is to use message-passing library routines that are linked to
conventional sequential program(s) for message passing.

Problem divided into a number of concurrent processes.

Processes will communicate by sending messages; this will be the only way to distribute
data and results between processes.

8
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Processor

Interconnection
network

Shared

Computers

Messages

Figure 1.5Shared memory multiprocessor 
implementation.

memory

Distributed Shared Memory

Each processor has access to the whole memory using a single memory address space. 

For a processor to access a location not in its local memory, message passing must occur to
pass data from the processor to the location or from the location to the processor, in some
automated way that hides the fact that the memory is distributed. 

Shared Virtual Memory, 

Gives the illusion of shared memory even when it is distributed.



9
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

MIMD and SIMD Classifications

In a single processor computer, a single stream of instructions is generated from the
program. The instructions operate upon data items.

Flynn (1966) created a classification for computers and called this single processor
computer a single instruction stream-single data stream (SISD) computer.

Multiple Instruction Stream-Multiple Data Stream (MIMD) 
Computer.

General-purpose multiprocessor system - each processor has a separate program and one
instruction stream is generated from each program for each processor. Each instruction
operates upon different data.

Both the shared memory and the message-passing multiprocessors so far described are in
the MIMD classification.

Single Instruction Stream-Multiple Data Stream (SIMD) 
Computer

A specially designed computer in which a single instruction stream is from a single
program, but multiple data streams exist. The instructions from the program are broadcast
to more than one processor. Each processor executes the same instruction in synchronism,
but using different data.

Developed because there are a number of important applications that mostly operate upon
arrays of data.

10
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Figure 1.6MPMD structure.

Program

Processor

Data

Program

Processor

Data

Instructions Instructions

 Multiple Program Multiple Data (MPMD) 
Structure

Within the MIMD classification, which we are concerned with, each processor will have its
own program to execute:



11
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

 Single Program Multiple Data (SPMD) 
Structure

Single source program is written and each processor will execute its personal copy of this
program, although independently and not in synchronism.

The source program can be constructed so that parts of the program are executed by certain
computers and not others depending upon the identity of the computer.

12
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

PM

C

PM

C

PM

C

Figure 1.7Static link multicomputer.

Computers

Network with direct links
between computers

Architectural Features of Message-Passing 
Multicomputers

Static Network Message-Passing Multicomputers



13
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Links
to other

nodes

Switch

ProcessorMemory

Computer (node)

Links
to other
nodes

Figure 1.8Node with a switch for internode message transfers.

14
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Link

Figure 1.9A link between two nodes with 
separate wires in each direction.

Node Node



15
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Network Criteria

Cost - indicated by the number of links in the network.
(Ease of construction is also important.) 

Bandwidth - the number of bits that can be transmitted in unit time, given as bits/sec. 

Network latency - the time to make a message transfer through the network. 

Communication latency - the total time to send the message, including the software
overhead and interface delays. 

Message latency or startup time - the time to send a zero-length message. Essentially the
software and hardware overhead in sending a message (finding the route, packing, unpack-
ing, etc.) onto which must be added the actual transmission time to send the data along the
link.

Number of links in a path between two nodes is a major factor in determining the delay for
a message. 

Diameter - the minimum number of links between the two farthest nodes in the network.
Note that only the shortest routes are used. Used to determine the worst case delays.

Bisection width of a network - the number of links (or sometimes wires) that must be cut
to divide the network into two equal parts. This can provide a lower bound for messages in
a parallel algorithm.

16
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Figure 1.10Ring.

Interconnection Networks



17
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Figure 1.11Two-dimensional array 
(mesh).

Links
Computer/
processor

18
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Figure 1.12Tree structure.

Processing
element

Root

Links



19
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Figure 1.13Three-dimensional hypercube. 000001

010011

100

110

101

111

20
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

00000001

00100011

0100

0110

0101

0111

10001001

10101011

1100

1110

1101

1111

Figure 1.14Four-dimensional hypercube.



21
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Figure 1.15Embedding a ring onto a torus.

Ring

Embedding

As applied to static networks, describes mapping nodes of one network onto another net-
work.

Example - a ring can be embedded in a torus:

22
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Figure 1.16Embedding a mesh into a 
hypercube.

00

01

11

10

00011110 y
x

Nodal address
1011



23
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Figure 1.17Embedding a tree into a mesh.

Root

A

A

A

A

A

A

Dilation - used to indicate the quality of the embedding.

The dilation is the maximum number of links in the “embedding” network corresponding
to one link in the “embedded” network.

Perfect embeddings, such as a line/ring into mesh/torus or a mesh onto a hypercube, have
a dilation of 1.

Sometimes it may not be possible to obtain a dilation of 1.

Example, mapping a tree onto a mesh or hypercube does not result in a dilation of 1 except
for very small trees of height 2:

24
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Communication Methods

Ways that messages can be transferred from a source to a destination.

Circuit Switching 

Involves establishing the path and maintaining all the links in the path for the message to
pass, uninterrupted, from the source to the destination. All the links are reserved for the
transfer until the message transfer is complete.

A simple telephone system (not using advanced digital techniques) is an example of a
circuit-switched system. Once a telephone connection is made, the connection is main-
tained until the completion of the telephone call.

Circuit switching has been used on some multicomputers (for example, the Intel IPSC-2
hypercube system), but it suffers from forcing all the links in the path to be reserved for the
complete transfer. None of links can be used for other messages until the transfer is com-
pleted.



25
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Packet Switching, 

Message is divided into “packets” of information, each of which includes the source and
destination addresses for routing the packet through the interconnection network. There is
a maximum size for the packet, say 1000 data bytes, and if the message is larger than this,
more than one packet must be sent through the network.

Buffers are provided inside nodes to hold packets before they are transferred onward to the
next node. A packet remains in a buffer if blocked from moving forward to the next node.
This form called store-and-forward packet switching. 

The mail system is an example of a packet-switched system. Letters are moved from the
mailbox to the post office and handled at intermediate sites before being delivered to the
destination.

Store-and-forward packet switching enables links to be used by other packets once the
current packet has been forwarded. 

Incurs a significant latency since packets must first be stored in buffers within each node,
whether or not an outgoing link is available. 

Virtual Cut-Through, 

Eliminated storage latency
I
If the outgoing link is available, the message is immediately passed forward without being
stored in the nodal buffer; i.e., it is “cut through.”

If the complete path were available, the message would pass immediately through to the
destination.

However, if the path is blocked, storage is needed for the complete message/packet being
received.

26
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Head Packet

Request/
Acknowledge

signal(s)

Figure 1.18Distribution of flits.

Flit buffer

Movement

Wormhole routing 

Alternative to normal store-and-forward routing to reduce the size of the buffers and de-
crease the latency.

The message is divided into smaller units called flits (flow control digits). A flit is usually
one or two bytes. The link between nodes may provide for one wire for each bit in the flit
so that the flit can be transmitted in parallel.

Only the head of the message is initially transmitted from the source node to the next node
when the connecting link is available.

Subsequent flits of the message are transmitted when links become available, and the flits
can become distributed through the network.

When the head flit moves forward, the next one can move forward and so on. A request/
acknowledge system is necessary between nodes to “pull” the flits along:



27
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Data

R/A

SourceDestination
processorprocessor

Figure 1.19A signaling method between 
processors for wormhole routing (Ni and 
McKinley, 1993).

A Signaling System

Only requires a single wire between the sending node and receiving node, called R/A (re-
quest/acknowledge).

R/A is reset to a 0 by the receiving node when the receiving node is ready to receive the flit
(its flit buffer is empty).

R/A is set to a 1 by the sending node when the sending node is about to send the flit.

The sending node must wait for R/A = 0 before setting it to a 1 and sending the flit.

The sending node knows that the data has been received when the receiving node resets R/
A to a 0.

28
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Message Latency
Suppose the message length is L, the bandwidth of the links B, and the number of links used
is l.

Circuit Switching

where Lc is the length of control packet sent to establish the path. If Lc « L, the latency is
essentially constant (L/B).

Store-and-forward Packet Switching

i.e., a latency proportional to the number of links used.

Virtual Cut-Through

where Lh is the length of the header field.

Wormhole

where Lf is the length of each flit.

If the length of a flit is much less than the total message, the latency of wormhole routing
will be appropriately constant irrespective of the length of the route. (Circuit switching will
produce a similar characteristic.) In contrast, store-and-forward packet switching produces
a latency that is approximately proportional to the length of the 

Latency = 
Lc

B
l+

L
B

Latency = 
L
B

l

Latency = 
Lh

B
l+

L
B

Latency = 
Lf

B
l+

L
B



29
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Packet switching

Circuit switching
Wormhole routing

Distance

Network

(number of nodes between source and destination)

latency

Figure 1.20Network delay characteristics.

30
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Messages

Node 1Node 2

Node 3 Node 4

Figure 1.21Deadlock in store-and-forward 
networks.

Livelock - occur particularly in adaptive routing algorithms and describes the situation in
which a packet keeps going around the network without ever finding its destination. 

Deadlock - occurs when packets cannot be forwarded to the next node because they are
blocked by other packets waiting to be forwarded and these packets are blocked in a similar
way such that none of the packets can move.

Example:

Node 1 wishes to send a message through node 2 to node 3. Node 2 wishes to send a
message through node 3 to node 4. Node 3 wishes to send a message through node 4 to node
1. Node 4 wishes to send a message through node 1 to node 2. 

All the messages are blocked because the node buffers are not free to accept packets:



31
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Physical link

Virtual channel

Route

bufferNodeNode

Figure 1.22Multiple virtual channels mapped onto a single physical channel.

Virtual Channels

A general solution to deadlock.

The physical links or channels are the actual hardware links between nodes.

Multiple virtual channels are associated with a physical channel and time-multiplexed onto
the physical channel,

32
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Networked Computers as a Multicomputer 
Platform

Now widely recognized that a cluster of workstations (COWs), or network of workstations
(NOWs), offers a very attractive alternative to expensive supercomputers and parallel
computer systems for high-performance computing.

Key advantages are as follows:

1.Very high performance workstations and PCs are readily available at low cost.

2.The latest processors can easily be incorporated into the system as they become avail-
able.

3.Existing software can be used or modified.

Parallel Programming Software Tools for Workstations

Parallel Virtual Machine (PVM) - develped inthe late 1980’s. Became very popular. 

Message-Passing Interface (MPI) - standard was defined in 1990s. 



33
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

WorkstationsFigure 1.23Ethernet-type single wire 
network.

Workstation/

Ethernet

file server

Ethernet

Common communication network for workstations

Consisting of a single wire to which all the computers attach: 

34
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Figure 1.24Ethernet frame format.

Preamble

(64 bits)

Destination
address
(48 bits)

Source
address
(48 bits)

Type

(16 bits)

Data

(variable)

Frame check
sequence
(32 bits)

Direction



35
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Network

Workstation/

Workstations

Figure 1.25Network of workstations connected via a ring.

file server

Ring Structures

Examples - token rings/FDDI networks

36
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Workstation/
file server

Workstations

Figure 1.26Star connected network.

Point-to-point Communication

Provides the highest interconnection bandwidth.

Various point-to-point configurations can be created using hubs and switches.

Examples - High Performance Parallel Interface (HIPPI), Fast (100 MHz) and Gigabit
Ethernet, and fiber optics.



37
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Figure 1.27Overlapping connectivity Ethernets.

(a) Using specially designed adaptors

(b) Using separate Ethernet interfaces

Parallel programming cluster

 Overlapping Connectivity Networks 

Have the characteristic that regions of connectivity are provided and the regions overlap.

There are several ways overlapping connectivity can be achieved;

In the case of overlapping connectivity Ethernets, achieved by having Ethernet segments:

38
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Speedup Factor

where ts is the execution time on a single processor and tp is the execution time on a multi-
processor. S(n) gives the increase in speed in using a multiprocessor. 

For comparing a parallel solution with a sequential solution, we will use the fastest
known sequential algorithm for running on a single processor. The underlying algorithm for
the parallel implementation might be (and is usually) different.

In a theoretical analysis, speedup factor will also be cast in terms of computational steps:

Example

Suppose a parallel sorting algorithm requires 4n steps and the best sequential sorting algorithm
requires nlogn steps (compare and exchange sorting). The speedup factor would be (1/4)log n.

The maximum speedup is n with n processors (linear speedup).

Superlinear Speedup

where S(n) > n, may be seen on occasion, but usually this is due to using a suboptimal
sequential algorithm or some unique feature of the architecture that favors the parallel for-
mation.

One common reason for superlinear speedup is the extra memory in the multiprocessor
system which can hold more of the problem data at any instant, it leads to less, relatively
slow disk memory traffic. Superlinear speedup can occur in search algorithms.

S(n) = Execution time using one processor (single processor system)
Execution time using a multiprocessor with n processors

=ts
 tp

S(n) = Number of computational steps using one processor
Number of parallel computational steps with n processors



39
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Time

Process 1

Process 2

Process 3

Process 4

Waiting to send a message

Figure 1.28Space-time diagram of a message-passing program.

Message

Computing

Slope indicating time
to send message

40
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Serial sectionParallelizable sections

(a) One processor

(b) Multiple
processors

fts(1 − f)ts

ts

(1 − f)ts/n

Figure 1.29Parallelizing sequential problem — Amdahl’s law.

tp

n processors

Maximum Speedup

If the fraction of the computation that cannot be divided into concurrent tasks is f, and no
overhead incurs when the computation is divided into concurrent parts, the time to perform
the computation with n processors is given by fts + (1 − f)ts/n, as illustrated below:



41
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Figure 1.30(a) Speedup against number of processors. (b) Speedup against serial fraction, f.

4

8

12

16

20

0.20.40.60.81.0
Serial fraction, f

(b)

n = 256

n = 16
4

8

12

16

20

48121620

f = 20%

f = 10%

f = 5%

f = 0%

Number of processors, n

(a)

Speedup factor is given by

This equation is known as Amdahl’s law

S(n) = 
tsn =

fts + (1 − f)ts/n1 + (n − 1)f

Even with an infinite number of processors, the maximum speedup is limited to 1/f; i.e.,

For example, with only 5% of the computation being serial, the maximum speedup is 20,
irrespective of the number of processors. 

Sn()1
f
--- =

n → ∞

42
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Efficiency

which leads to

when E is given as a percentage.

Efficiency gives the fraction of the time that the processors are being used on the computa-
tion.

Cost

The processor-time product or cost (or work) of a computation defined as

Cost = (execution time) × (total number of processors used)

The cost of a sequential computation is simply its execution time, ts. The cost of a parallel
computation is tp × n. The parallel execution time, tp, is given by ts/S(n). Hence, the cost of
a parallel computation is given by

Cost-Optimal Parallel Algorithm 

One in which the cost to solve a problem on a multiprocessor is proportional to the cost (i.e.,
execution time) on a single processor system.

EExecution time  using one processor
Execution time using a multiprocessornumber of processors ×
------------------------------------------------------------------------------------------------------------------------------------------------------ =

ts

tpn ×
-------------- =

E = S(n)× 100% n

Cost
tsn

Sn()
----------- 

ts

E
--- = =



43
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Scalability
Used to indicate a hardware design that allows the system to be increased in size and in
doing so to obtain increased performance - could be described as architecture or hardware
scalablity.

Scalability is also used to indicate that a parallel algorithm can accommodate increased data
items with a low and bounded increase in computational steps - could be described as algo-
rithmic scalablity.

Problem Size

Combined architecture/algorithmic scalability suggests that increased problem size can be
accommodated with increased system size for a particular architecture and algorithm. 

Intuitively, we would think of the number of data elements being processed in the algorithm
as a measure of size.

However, doubling the problem size would not necessarily double the number of computa-
tional steps. It will depend upon the problem.

For example, adding two matrices, as discussed in Chapter 10, has this effect, but multiply-
ing matrices does not. The number of computational steps for multiplying matrices quadru-
ples.

Hence, scaling different problems would imply different computational requirements. An
alternative definition of problem size is to equate problem size with the number of basic
steps in the best sequential algorithm.

44
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Gustafson’s Law

Rather than assume that the problem size is fixed, assume that the parallel execution time
is fixed. In increasing the problem size, Gustafson also makes the case that the serial section
of the code does not increase as the problem size.

Scaled Speedup Factor

The speedup factor when the problem is scaled). 

Let s be the time for executing the serial part of the computation and p the time for
executing the parallel part of the computation on a single processor.

Suppose we fix the total execution time on a single processor, s + p, as a constant.

Let the execution time of the parallel computer be a serial part and a parallel part, s + p, and
the same time as the original serial computation.

For algebraic convenience, let s + p = 1.

The scaled speedup factor becomes

called Gustafson’s law.

Gustafson’s observation here is that the scaled speedup factor as a function of s is a line of
(negative) slope (1 − n) rather than the rapid reduction previously illustrated in Figure 1.30.

For example, suppose we had a serial section of 5% and 20 processors; the speedup
according to the formula is 0.05 + 0.95(20) = 19.05 instead of 10.26 according to Amdahl’s
law. (Note, however, the different assumptions.)

Ssn()
snp +
sp +
---------------snp +n1n – ()s + ===



45
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

PROBLEMS

1-1.Suppose a galaxy has 1011 stars. Estimate the time it would take to perform 100 iterations of
the basic O(N2) N-body algorithm using a computer that is capable of 500 MFlops.

1-2.What is the diameter of a torus?

1-3.What is the diameter of a tree network?

1-4.What is the diameter of a d-dimensional mesh?

1-5.Determine the route taken in a five-dimensional hypercube network from node 7 to node 22
using the deadlock free e-cube routing algorithm described in the chapter. Repeat for an 8 × 8
mesh, assuming that nodes are numbered in row order (across the rows starting at the top left
corner).

1-6.Draw a k-ary n-cube (a hypercube with k processors in each of n dimensions) when k = 4 and
n = 4. Determine the appropriate number representation and number the processors. (Recall
that a binary hypercube uses k = 2 and the binary number representation.)

1-7.Suppose we wanted to embed a 9 × 9 mesh onto a hypercube. List the x- and y- coordinates of
the mesh.

1-8.Determine how the largest possible complete binary tree can be embedded into a hypercube
and a mesh. What is the dilation of your mappings? Embed two disjoint trees into a hypercube.
Determine the average distance between two nodes in a mesh network and a hypercube
network.

1-9.Determine the communication lower bound for a complete binary tree, based upon diameter
and based upon bisection width.

1-10.Suppose n numbers are distributed uniformly in a mesh. What is the communication lower
bound for a sorting algorithm that distributes the sorted numbers uniformly across the network,
based upon diameter and based upon bisection width?

1-11.A multiprocessor consists of 10 processors, each capable a peak execution rate of 200
MFLOPs (millions of floating point operations per second). What is the performance of the
system as measured in MFLOPs when 10% of the code is sequential and 90% is parallelizable?

1-12.Suppose the best sequential algorithm for a problem requires  steps for n data items.
What is the minimum number of steps for a parallel algorithm to be cost optimal using n2 pro-
cessors?

1-13.It is possible to construct a system that is a hybrid of a message-passing multicomputer and a
shared memory multiprocessor. Write a report on how this might be achieved and its relative
advantages over a purely message-passing system and a purely shared memory system.

1-14.(Research question) For each of the following interconnection networks, identify one commer-
cial multiprocessor system having that network:

(i)Single bus

(ii)Two-dimensional mesh

(iii)Three-dimensional mesh

(iv)Hypercube

(v)Tree

(vi)Another interconnection network

2nn log


