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Illiac IV History

� First massively parallel computer

● SIMD (duplicate the PE, not the CU)

● First large system with semiconductor-
based primary memory

� Three earlier designs (vacuum tubes and
transistors) culminating in the Illiac IV
design, all at the University of Illinois

● Logical organization similar to the
Solomon (prototyped by Westinghouse)

● Sponsored by DARPA, built by various
companies, assembled by Burroughs

● Plan was for 256 PEs, in 4 quadrants of
64 PEs, but only one quadrant was built

● Used at NASA Ames Research Center in
mid-1970s
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Illiac IV
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Illiac IV Architectural Overview

� One CU (control unit),
64 64-bit PEs (processing elements),
each PE has a PEM (PE memory)

� CU operates on scalars, PEs on vector-
aligned arrays

● All PEs execute the instruction broadcast
by the CU, if they are in active mode

● Each PE can perform various arithmetic
and logical instructions

● Each PE has a memory with 2048 64-bit
words, accessed in less than 188 ns

● PEs can operate on data in 64-bit, 32-bit,
and 8-bit formats

� Data routed between PEs various ways

� I/O is handled by a separate Burroughs
B6500 computer (stack architecture)
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Programming Issues

� Consider the following FORTRAN code:
DO 10 I = 1, 64

10 A(I) = B(I) + C(I)

● Put A(1), B(1), C(1) on PU 1, etc.
� Each PE loads RGA from base+1,

adds base+2, stores into base,
where “base” is base of data in PEM

� Each PE does this simultaneously, giving
a speedup of 64

● For less than 64 array elements, some
processors will sit idle

● For more than 64 array elements, some
processors might have to do more work

� For some algorithms, it may be desirable
to turn off PEs

● 64 PEs compute, then one half passes
data to other half, then 32 PEs compute,
etc.
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The Illiac IV Array

� Illiac IV Array = CU + PE array

� CU (Control Unit)

● Controls the 64 PEs (vector operations)

● Can also execute instructions (scalar ops)

● 64 64-bit scratchpad registers

● 4 64-bit accumulators

� PE (Processing Element)

● 64 PEs, numbered 0 through 63

● RGA = accumulator

● RGB = for second operand

● RGR = routing register, for communication

● RGS = temporary storage

● RGX = index register for instruction addrs.

● RGD = indicates active or inactive state
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The Illiac IV Array (cont.)

� PEM (PE Memory)

● Each PE has a 2048-word 64-bit local
random-access memory

● PE 0 can only access PEM 0, etc.

� PU (Processing Unit) = PE + PEM

� Data paths

● CU bus — 8 words of instructions or data
can be fetched from a PEM and sent to
the CU (instructions distributed in PEMs)

● CDB (Common Data Bus) — broadcasts
information from CU to all PEs

● Routing network — PE i is connected to
PE i -1, PE i +1, PE i -8, and PE i +8
� Wraps around, data may require multiple

transfers to reach its destination

● Mode bit line — single line from RGD of
each PE to the CU
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Illiac IV I/O System

� I/O system = I/O subsystem, DFS, and a
Burroughs B6500 control computer

� I/O subsystem

● CDC (Control Descriptor Controller) —
interrupts the Burroughs B6500 upon
request by the CU, loads programs and
data from the DFS into the PEM array

● BIOM (Buffer I/O Memory) — buffers
(much faster) data from DFS to CPU

● IOS (I/O Switch) — selects input from
DFS vs. real-time data

� DFS (Disk File System)

● 1 Gb, 128 heads (one per track)

● 2 channels, each of which can transmit or
receive data at 0.5 Gb/s over a 256-bit
bus (1 Gb/s using both channels)
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Illiac IV I/O System (cont.)

� Burroughs B6500 control computer

● CPU, memory, peripherals (card reader,
card punch, line printer, 4 magnetic tape
units, 2 disk files, console printer, and
keyboard)

● Manages requests for system resources

● OS, compilers, and assemblers

● Laser memory
� 1 Tb write-once read-only laser memory

� Thin film of metal on a polyester sheet, on
a rotating drum

� 5 seconds to access random data

● ARPA network link
� High-speed network (50 Kbps)
� Illiac IV system was a network resource

available to other members of the ARPA
network
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Illiac IV Software

� Illiac IV delivered to NASA Ames
Research Center in 1972, operational
sometime (?) after mid -1975

● Eventually operated M–F, 60-80 hours of
uptime, 44 hours of maintenance /
downtime

� No real OS, no shared use of Illiac IV, one
user at a time

● An OS and two languages (TRANQUIL &
GLYPNIR) were written at Illinois

● At NASA Ames, since PDP-10 and PDP-
11 computers were used in place of the
B6500, new software was needed, and a
new language called CFD was written for
solving differential equations
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Cray-1 History

� In January 1978, a CACM article says
there are only 12 non-Cray-1 vector
processors worldwide:

● Illiac IV is the most powerful processor

● TI ASC (7 installations) is the most
populous

● CDC STAR 100 (4 installations) is the
most publicized

� Recent report says the Cray-1 is more
powerful than any of its competitors

● 138 MFLOPS for sustained periods

● 250 MFLOPS for short bursts

� Features:  chaining (access intermediate
results w/o memory references), small
size (allows 12.5 ns clock = 80 MHz),
memory with 1M 64-bit words
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Cray-1 Physical Architecture

� Physical architecture

● “World’s most expensive love-seat”

● Cylindrical, 8.5’ in diameter (seat), 4.5’ in
diameter (tower), 6.5’ tall (tower)

● Composed of 12 wedge-like columns in
270° arc, so a “reasonably trim individual”
can get inside to work

● “Love seat” hides power supplies and
plumbing for Freon cooling system

� Freon cooling system

● In each chassis are vertical cooling bars
lining each wall

● Freon is pumped through a stainless steel
tube inside an aluminum casing

● Modules have a copper heat transfer
plate that attaches to the cooling bars

● 70F tube temp = 130F center of module
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Cray-1
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Cray-1 Architecture

� Computer architecture

● 12 I/O channels, 16 memory banks, 12
functional units, 4KB of register storage

● Only 4 chip types

● Fast main memory, fast computation

� 4 chip types

● 16x4 bit register chips (6 ns)

● 1024x1 bit memory chips (50 ns)

● Simple low- or high-speed gates with both
a 5-wide and a 4-wide gate (5/4 NAND)

� Fabrication

● 6”x8” printed circuit boards

● ICs in 16-pin packages, up to 288
packages per board to build 113 different
module types, up to 72 modules per 28-
inch high chassis
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Cray-1 Architecture (cont.)

� Memory (16 banks, 72 modules / bank)

● 64 modules = 1 bit in 64 bit word

● 8 modules = check byte for single-bit
error correction, double bit error detection

� Functional units

● 12 pipelined functional units in 4 groups:
address, scalar, vector, and floating point

● Scalar add = 3 cycles, vector add = 3
cycles, floating-point add = 6 cycles,
floating-point multiply = 7 cycles,
reciprocal approximation = 14 cycles

� Instruction formats

● Either one or two 16-bit “parcels”

● Arithmetic and logical instructions operate
on 3 registers

● Read & store instructions access memory
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Cray-1 Registers

� Registers

● 8 address registers (A), 64 address-save
registers (B), 8 scalar registers (S), 64
scalar-save registers (T), & 8 64-word
vector registers (V)

� 8 24-bit address registers (A)

● Used as address registers for memory
references and as index registers

● Index the base register for scalar memory
references, provide base address and
index for vector memory references

● 24-bit integer address functional units
(add, multiply) operate on A data

� 64 24-bit address-save registers (B)

● Used to store contents of A registers
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Cray-1 Registers (cont.)

� 8 64-bit scalar registers (S)

● Used in scalar operations

● 64-bit integer scalar functional units (add,
shift, logical, population/leading zero
count) operate on S data

� 64 64-bit scalar-save registers (T)

● Used to store contents of S registers,
typically intermediate results of complex
computations

� 8 64-element vector registers (V)

● Each element is 64 bits wide

● Each register can contain a vector of data
(row of a matrix, etc.)

● Vector Mask register (VM) controls
elements to be accessed, Vector Length
register (VL) specifies number of
elements to be processed
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Vector Arithmetic

� First, consider a vector on a SISD (non-
parallel) machine

● Vectors A, B, and C are each one-
dimensional arrays of 10 integers

● To add each corresponding value from A
and B, storing the sum in C, would
require at least 4 cycles, 40 cycles overall

● If the CPU is a vector processor, loading,
adding, and storing gets pipelined, so
after a few cycles, a new value get stored
into C each cycle, for 12 cycles overall,
speedup of 40/12 = 3.33

● The longer the vector, the more speedup

� Now consider a vector on a SIMD
machine — each processor can do this
vector processing in parallel

● 64 processors => speedup of 213 over
original computation!
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Chaining

� Vector operation operates on either two
vector registers, or one vector register
and one scalar register

� Parallel vector operations may be
processed two ways:

● Using different functional units and vector
registers, or

● By chaining — using the result stream
from one vector register simultaneously
as the operand set for another operation
in a different functional unit
� Intermediate results do not have to be

stored in memory, and can even be used
before a particular vector operation has
finished

� Similar to data forwarding in the IBM 360’s
pipeline
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Handling Data Hazards

� Write / read data hazard example:
ADD R2, R3, R4

ADD R1, R2, R6

� Can be avoided with register interlocks

� Can also be avoided with data forwarding

fetch
inst 1

fetch
inst 2
get

R3,R4
get

R2,R6
add

R3,R4
add

R2,R6
store

into R2
store

into R1

fetch
inst 1

fetch
inst 2
get

R3,R4
get

R2,R6
add

R3,R4
add

R2,R6
store

into R2
store

into R1

slip slip

slip slip

slip slip

fetch
inst 1

fetch
inst 2
get

R3,R4
get

sum,R6
add

R3,R4
add

sum,R6
store

into R2
store

into R1
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Handling Data Hazards (cont.)

� Register interlocks

● An instruction gets blocked until all its
source registers are loaded with the
appropriate values by earlier instructions

● A “valid / invalid” bit is associated with
each register
� During decode stage, destination register

is set to invalid (it will change)

� Decode stage blocks until all its source
(and destination) registers are valid

� Store stage sets destination register to
valid

� Data forwarding

● Output of ALU is connected directly to
ALU input buses

● Result of an ALU operation is now
available immediately to later instructions
(i.e., even before it gets stored in its
destination register)
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Miscellaneous

� Evolution

● Seymour Cray was a founder of Control
Data Corp. (CDC) and principal architect
of CDC 1604 (non-vector machines)

● 8600 at was to be made of tightly-coupled
multiprocessors; it was cancelled so Cray
left to form Cray Research

� Software

● Cray Operating System (COS) — up to
63 jobs in a multiprog. environment

● Cray Fortran Compiler (CFC) —
optimizes Fortran IV (1966) for the Cray-1
� Automatically vectorizes many loops that

manipulate arrays

� Front-end computer

● Any computer, such as a Data General
Eclipse or IBM 370/168
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Cray X-MP, Y-MP, and {CJT}90

� At Cray Research, Steve Chen continued
to update the Cray-1, producing…

� X-MP

● 8.5 ns clock (Cray-1 was 12.5 ns)

● First multiprocessor supercomputer
� 4 vector units with scatter / gather

� Y-MP

● 32-bit addressing (X-MP is 24-bit)

● 6 ns clock

● 8 vector units

� C90, J90 (1994), T90

● J90 built in CMOS, T90 from ECL (faster)

● Up to 16 (C90) or 32 (J90/T90)
processors, with one multiply and one
add vector pipeline per CPU
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Cray X-MP @ National
Supercomputer Center in Sweden
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Cray-2 & Cray-3

� At Cray Research, Steve Chen continued
to update the Cray-1 with improved
technologies:  X-MP, Y-MP, etc.

� Seymour Cray developed Cray-2 in 1985

● 4-processor multiprocessor with vectors

● DRAM memory (instead of SRAM), highly
interleaved since DRAM is slower

● Whole machine immersed in Fluorinert
(artificial blood substitute)

● 4.1 ns cycle time (3x faster than Cray-1)

● Spun off to Cray Computer in 1989

� Seymour Cray developed Cray-3 in 1993

● Replace the “C” shape with a cube so all
signals take same time to travel

● Supposed to have 16 processors, had 1
with a 2 ns cycle time
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Thinking Machines Corporation’s
Connection Machine CM-2

� Distributed-memory SIMD (bit-serial)

� Thinking Machines Corp. founded 1983

● CM-1, 1986 (1000 MIPS, 4K mem / proc)

● CM-2, 1987 (2500 MFLOPS, 64K…)

� Programs run on one of 4 front-end
processors, which issues instructions to
the Parallel Processing Unit (PE array)

● Control flow and scalar operations run on
front-end processors, parallel operations
run on PPU

● A 4x4 crossbar switch (Nexus) connects
the 4 front-ends to 4 sections of the PPU

● Each PPU section is controlled by a
sequencer, which receives assembly
language (Paris) instructions and
broadcasts micro-instructions to each
processor
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CM-2 Processors

� Each node contains 32 processors
(implemented by 2 custom processor
chips), 2 floating-point accelerator chips,
and memory chips

� Processor chip (contains 16 processors)

● Contains ALU, flag registers, etc.

● Contains NEWS interface, router
interface, and I/O interface

● 16 processors are connected in a 4x4
mesh to their N, E, W, and S neighbors

� RAM memory

● 64Kbits, bit addressable

� FP acceleration (2 chips)

● First chip is interface, second is FP
execution unit

● 2 chips serve 32 processors
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CM-2 Processor Chip

� Instruction

● All processor chips receive the same
instruction from the sequencer
� Individual processors may be masked

using a flag bit for processor activation

● Produces outputs based on memory / flag
lookup table (256 possible functions)

● Arithmetic is bit-serial

� 16 flag registers

● 8 bits for general purpose use

● 8 bits predefined
� NEWS flag — accessible by neighbors
� 2 flags for message router data movement

and handshaking

� Memory parity flag

� Flag for daisy-chaining processors

� Zero flag (hardcoded)

� 2 diagnostic flags
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CM-2 Interconnect

� Broadcast and reduction network

● Broadcast

● Reduction (e.g., bitwise OR, numerically
largest, or sum)

● Scan — collect cumulative results over
sequence of processors (e.g., parallel
prefix)

● Spread (scatter)

● Sort elements

� NEWS grid can be used for nearest-
neighbor communication

● Communication in multiple dimensions:
256x256, 1024x64, 8x8192, 64x32x32,
16x16x16x16, 8x8x4x8x8x4

● Regular pattern avoids overhead of
explicitly specifying destination address
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CM-2 Interconnect (cont.)

� The 16-processor chips are linked by a
12-dimensional hypercube

● Send or get values from arbitrary
locations in data-parallel fashion

� Hypercube uses router for point-to-point
communication between processor chips

● Messages move across each of 12
dimensions in sequence

● If no conflicts, a message will reach its
destination within 1 cycle of the sequence
� All processors can send a message (of

any length), all messages are sent and
delivered at same time

● Actual throughput depends on message
length and access patterns
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CM-2 Nexus

� The nexus is a 4x4 crosspoint switch that
connects up to 4 front-end computers to
up to 4 sequencers

● CM can be configured as up to 4
sections, each used separately

● Any front-end can be connected to any
section or combination of sections

● Example:  64K processors, four 16K
sections (1 to one FE, 1 to another FE, 2
to third FE, fourth PE for other tasks)

� Each section connects to one of 8 I/O
channels (graphics display frame buffer,
or I/O controller)

● Transfers initiated by front-end computers

● Data goes into buffers, when buffers are
full it goes to a data vault (each has 39
disk drives, total capacity 10GB)
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Software

� System software is based on OS used in
front-end computers

● Use familiar OS, languages

● Front end handles all flow of control,
including storing and executing program,
and interaction with user and programmer

● Languages:  Paris, *LISP, CM-LISP, C*

� Paris (parallel instruction set)

● Inter-processor communication, vector
summation, matrix multiplication, sorting

● Front-end processor sends Paris
instructions to processor sequencers
� Functions & subroutines (direct actions of

processors, router, I/O, etc., including
scan and spread operations), global
variables (find out how many processor
are available, etc.)

� Sequencer produces low-level instructs.
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DAP Overview

� Distributed-memory SIMD (bit-serial)

� International Computers Limited (ICL)

● 1976 prototype, deliveries in 1980

● ICL spun off Actime Memory Technology
Ltd in 1986, became Cambridge Parallel
Processing Inc in 1992

� Matrix of PEs

● 32x32 for DAP 500, 64x64 for DAP 600

● Connection to 4 nearest neighbors (w/
wrap-around), plus column & row buses

● One-bit PEs with 32Kb–1Mb of memory

� DAP system = host + MCU + PE array

● Host (Sun or VAX) interacts with user

● Master control unit (MCU) runs main
program, PE array runs parallel code
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DAP MCU and HCU

� MCU (Master Control Unit)

● 32-bit 10 MHz CPU w/ registers,
instruction counter, arithmetic unit, etc.

● Executes scalar instructions, broadcasts
others to PE array

� HCU (Host Connection Unit)

● Gateway between DAP and host

● Motorola 68020, SCSI port, VME
interface, two RS232 serial ports

● Provides memory boundary protection,
has EPROM for code storage, 1MB RAM
for data and program storage

● Data transfers are memory-memory
transfers across VME bus

● Provides medium-speed I/O plus fast
data channels (e.g.,to high-resolution
color display)
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DAP Processing Element

� 3 1-bit registers

● Q = accumulator, C = carry,
A = activity control (can inhibit memory
writes in certain instructions)

● All bits of a register over all PEs is called
a “register plane” (32x32 or 64x64 bits)

� Adder

● Two inputs connect to Q and C registers

● Third input connects to multiplexor, from
PE memory, output of Q or A registers,
carry output from neighboring PEs, or
data broadcast from MCU
� A register also get input from this mux

� Mux output can also be inverted

● PE outputs (adder and mux) can be
stored in memory, under control of A reg

● D reg for asynchronous I/O, S ref for
instructs that both read & write to memory
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PE Memory and MCU

� PE Memory

● Each PE has between 32 Kb and 1 Mb

● Vector (horizontal) mode:  successive bits
of a word are mapped onto successive
bits of a single row of a store plane

● Matrix (vertical) mode:  successive bits…
onto the same bit position in successive
store planes

� MCU functionality

● Instruction fetch, decoding, and address
generation

● Executes scalar instructions and
broadcasts instruction streams to PEs

● Transmits data between PE array
memory and MCU registers

● Transmits data between DAP and host
file system or peripherals

36 Fall 2003, SIMD

Master Control Unit (MCU)

� Code store (memory)

● 32 bit instructions,
between 128 K words and 1 M words

� 32-bit general-purpose registers

● M0 – M13:  general purpose, operated on
by arithmetic and logical operations, can
be transferred to and from memory array

● M1 — M7 can be used as “modifiers” for
addresses and values

� Machine states

● Non-privileged, interruptible (user mode)

● Privileged, interruptible

● Privileged, non-interruptible

� Datum / limit regs. for address checking



37 Fall 2003, SIMD

Master Control Unit (MCU) Instructions

� Addresses

● A 32-bit word, within a row or column,
within a store plane

� “DO” instruction

● No hardware overhead for these loops

● HW support allows instructions inside the
loops to access, in successive iterations,
successive bit planes, rows, columns,or
words of memory

� Nearest neighbor

● Specify direction in instruction for shifts

● For vector adds, specify whether rows or
columns are being added, which direction
to send carry bit

● Specify behavior at edge of operation
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Gamma IIPlus

� Fourth-generation DAP, produced by
Cambridge Parallel Processing in 1995

� Gamma IIPlus 1000 = 32x32
Gamma IIPlus 4000 = 64x64

� PE memory:  128Kb–1Mb

� PE also contains an 8-bit processor

● 32 bytes of internal memory

● D register to transfer data to/from array
memory (1-bit data path) and to/from
internal memory (8-bit data path)

● A register, similar to a 1-bit processor

● Q register, like accumulator, 32 bits wide
(any one of which can be selected as an
operand), can also be shifted

● ALU to provide addition, subtraction, and
logical operations
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Gamma II Plus 4000


