Intel Paragon XP/S Overview

- Distributed-memory MIMD multicomputer
- 2D array of nodes, performing both OS functionality as well as user computation
 - Main memory physically distributed among nodes (16-64 MB / node)
 - Each node contains two Intel i860 XP processors: application processor for user’s program, message processor for inter-node communication
- Balanced design: speed and memory capacity matched to interconnection network, storage facilities, etc.
 - Interconnect bandwidth scales with number of nodes
 - Efficient even with thousands of processors

Paragon XP/S Nodes

- Network Interface Controller (NIC)
 - Connects node to its PMRC
 - Parity-checked, full-duplexed router with error checking
- Message processor
 - Intel i860 XP processor
 - Handles all details of sending / receiving a message between nodes, including protocols, packetization, etc.
 - Supports global operations including broadcast, synchronization, sum, min, and, or, etc.
- Application processor
 - Intel i860 XP processor (42 MIPS, 50 MHz clock) to execute user programs
- 16–64 MB of memory

Paragon XP/S Node Interconnection

- 2D mesh chosen after extensive analytical studies and simulation
- Paragon Mesh Routing Chip (PMRC) / iMRC routes traffic in the mesh
 - 0.75 µm, triple-metal CMOS
 - Routes traffic in four directions and to and from attached node at > 200 MB/s
 - 40 ns to make routing decisions and close appropriate switches
 - Transfers are parity checked, router is pipelined, routing is deadlock-free
 - Backplane is active backplane of router chips rather than mass of cables
Paragon XP/S Usage

- OS is based on UNIX, provides distributed system services and full UNIX to every node
 - System is divided into partitions, some for I/O, some for system services, rest for user applications
- Applications can run on arbitrary number of nodes without change
 - Run on larger number of nodes to process larger data sets or to achieve required performance
- Users have client/server access, can submit jobs over a network, or login directly to any node
 - Comprehensive resource control utilities for allocating, tracking, and controlling system resources

Paragon XP/S Programming

- MIMD architecture, but supports various programming models: SPMD, SIMD, MIMD, shared memory, vector shared memory
- CASE tools including:
 - Optimizing compilers for FORTRAN, C, C++, Ada, and Data Parallel FORTRAN
 - Interactive Debugger
 - Parallelization tools: FORGE, CAST
 - Intel's ProSolver library of equation solvers
 - Intel's Performance Visualization System (PVS)
 - Performance Analysis Tools (PAT)

Thinking Machines CM-5 Overview

- Distributed-memory MIMD multicomputer
 - SIMD or MIMD operation
- Processing nodes are supervised by a control processor, which runs UNIX
 - Control processor broadcasts blocks of instructions to the processing nodes, and initiates execution
 - SIMD operation: nodes are closely synchronized, blocks broadcast as needed
 - MIMD operation: nodes fetch instructions independently and synchronize only as required by the algorithm
- Nodes may be divided into partitions
 - One control processor, called the partition manager, per partition
 - Partitions may exchange data

Thinking Machines CM-5 Overview (cont.)

- Other control processors, called I/O Control Processors, manage the system’s I/O devices
 - Scale to achieve necessary I/O capacity
 - DataVaults to provide storage
- Control processors in general
 - Scheduling user tasks, allocating resources, servicing I/O requests, accounting, security, etc.
 - May execute some code
 - No arithmetic accelerators, but additional I/O connections
 - In small system, one control processor may play a number of roles
 - In large system, control processors are often dedicated to particular tasks (partition manager, I/O cont. proc., etc.)
CM-5 Nodes

- **Processing nodes**
 - SPARC CPU
 - 22 MIPS
 - 8-32 MB of memory
 - Network interface
 - (Optional) 4 pipelined vector processing units
 - Each can perform up to 32 million double-precision floating-point operations per second
 - Including divide and square root

- Fully configured CM-5 would have
 - 16,384 processing nodes
 - 512 GB of memory
 - Theoretical peak performance of 2 teraflops

CM-5 Networks

- **Control Network**
 - Tightly coupled communication services
 - Optimized for fast response, low latency
 - Functions: synchronizing processing nodes, broadcasts, reductions, parallel prefix operations

- **Data Network**
 - 4-ary hypertree, optimized for high bandwidth
 - Functions: point-to-point commn. for tens of thousands of items simultaneously
 - Responsible for eventual delivery of messages accepted
 - Network Interface connects nodes or control processors to the Control or Data Network (memory-mapped control unit)

Tree Networks (Reference Material)

- **Binary Tree**
 - 2^k–1 nodes arranged into complete binary tree of depth k–1
 - Diameter is $2(k-1)$
 - Bisection width is 1

- **Hypertree**
 - Low diameter of a binary tree plus improved bisection width
 - Hypertree of degree k and depth d
 - From “front”, looks like k-ary tree of height d
 - From “side”, looks like upside-down binary tree of height d
 - Join both views to get complete network
 - 4-ary hypertree of depth d
 - 4^d leaves and $2^d(2^{d+1}–1)$ nodes
 - Diameter is $2d$
 - Bisection width is 2^{d+1}
CM-5 Usage

- Runs Cmost, enhanced vers. of SunOS
- User task sees a control processor acting as a Partition Manager (PM), a set of processing nodes, and inter-processor communication facilities
 - User task is a standard UNIX process running on the PM, and one on each of the processing nodes
 - The CPU scheduler schedules the user task on all processors simultaneously
- User tasks can read and write directly to the Control Network and Data Network
 - Control Network has hardware for broadcast, reduction, parallel prefix operations, barrier synchronization
 - Data Network provides reliable, deadlock-free point-to-point communication

IBM SP2 Overview

- Distributed-memory MIMD multicomputer
- Scalable POWERparallel 1 (SP1)
 - Development started February 1992, delivered to users in April 1993
- Scalable POWERparallel 2 (SP2)
 - 120-node systems delivered 1994
 - 4–128 nodes: RS/6000 workstation with POWER2 processor, 66.7 MHz, 267 MFLOPS
 - POWER2 used in RS 6000 workstations, gives compatibility with existing software
 - 1997 version (NUMA):
 - High Node (SMP node, 16 nodes max): 2–8 PowerPC 604, 112 MHz, 224 MFLOPS, 64MB–2GB memory
 - Wide Node (128 nodes max): 1 P2SC (POWER2 Super Chip, 8 chips on one chip), 135 MHz, 640 MFLOPS, 64MB–2GB memory

IBM SP2 @ Oak Ridge National Labs

IBM SP2 Overview (cont.)

- RS/6000 as system console
- SP2 runs various combinations of serial, parallel, interactive, and batch jobs
 - Partition between types can be changed
 - High nodes — interactive nodes for code development and job submission
 - Thin nodes — compute nodes
 - Wide nodes — configured as servers, with extra memory, storage devices, etc.
- A system “frame” contains 16 thin processor or 8 wide processor nodes
 - Includes redundant power supplies, nodes are hot swappable within frame
 - Includes a high-performance switch for low-latency, high-bandwidth communication
IBM SP2 Processors

- **POWER2 processor**
 - Various versions from 20 to 62.5 MHz
 - RISC processor, load-store architecture
 - Floating point multiple & add instruction with latency of 2 cycles, pipelined for initiation of new one each cycle
 - Conditional branch to decrement and test a “count register” (without fixed-point unit involvement), good for loop closings

- **POWER 2 processor chip set**
 - 8 semi-custom chips: Instruction Cache Unit, four Data Cache Units, Fixed-Point Unit (FXU), Floating-Point Unit (FPU), and Storage Control Unit
 - 2 execution units per FXU and FPU
 - Can execute 6 instructions per cycle: 2 FXU, 2 FPU, branch, condition register
 - Options: 4-word memory bus with 128 KB data cache, or 8-word with 256 KB

IBM SP2 Interconnection Network

- **General**
 - Multistage High Performance Switch (HPS) network, with extra stages added to keep bw to each processor constant
 - Message delivery
 - PIO for short messages with low latency and minimal message overhead
 - DMA for long messages
 - Multi-user support — hardware protection between partitions and users, guaranteed fairness of message delivery

- **Routing**
 - Packet switched = each packet may take a different route
 - Cut-through = if output is free, starts sending without buffering first
 - Wormhole routing = buffer on subpacket basis if buffering is necessary

IBM SP2 AIX Parallel Environment

- **Parallel Operating Environment** — based on AIX, includes Desktop interface
 - Partition Manager to allocate nodes, copy tasks to nodes, invoke tasks, etc.
 - Program Marker Array — (online) squares graphically represent program tasks
 - System Status Array — (offline) squares show percent of CPU utilization

- **Parallel Message Passing Library**

- **Visualization Tool** — view online and offline performance
 - Group of displays for communications characteristics or performance (connectivity graph, inter-processor communication, message status, etc.)

- **Parallel Debugger**

nCUBE Overview

- **Distributed-memory MIMD multicomputer** (with hardware to make it look like shared-memory multiprocessor)

- **History**
 - nCUBE 1 — 1985
 - nCUBE 2 — 1989
 - 34 GFLOPS, scalable
 - 32–8192 processors
 - nCUBE 3 — 1995
 - 1–6.5 TFLOPS, 65 TB memory, 24 TB/s hypercube interconnect, 1024 GB/s I/O channels, scalable
 - 8–65,536 processors

- **Operation**
 - Can be partitioned into “subcubes”
 - Programming paradigms: SPMD, inter-subcube processing, client/server
nCUBE 3 Processor

- 0.6 µm, 3-layer CMOS, 2.7 million transistors, 50 MHz, 16 KB data cache, 16 KB instruction cache, 100 MFLOPS
 - Argument against off-the-shelf processor: shared memory, vector floating-point units, aggressive caches are necessary in workstation market but superfluous here

- ALU, FPU, virtual memory management unit, caches, SDRAM controller, 18-port message router, and 16 DMA channels
 - ALU for integer operations, FPU for floating point operations, both 64 bit
 - Most integer operations execute in one 20ns clock cycle
 - FPU can complete two single- or double-precision operations in one clock cycle
 - Virtual memory pages can be marked as “non-resident”, the system will generate messages to transfer page to local node

nCUBE 3 Interconnect

- Hypercube interconnect
 - Added hypercube dimension allows for double the processors, but processors can be added in increments of 8
 - Wormhole routing + adaptive routing around blocked or faulty nodes

- ParaChannel I/O array
 - Separate network of nCUBE processors for load distribution and I/O sharing
 - 8 computational nodes (nCUBE processors plus local memory) connect directly to one ParaChannel node, and can also communicate with those nodes via the regular hypercube network
 - ParaChannel nodes can connect to RAID mass storage, SCSI disks, etc.
 - One I/O array can be connected to more than 400 disks

nCUBE 3 Software

- Parallel Software Environment
 - nCX microkernel OS — runs on all compute nodes and I/O nodes
 - UNIX functionality
 - Programming languages including FORTRAN 90, C, C++, as well as HPF, Parallel Prolog, and Data Parallel C

Kendall Square Research KSR1 Overview

- COMA distributed-memory MIMD multicomputer (with hardware to make it look like shared-memory multiprocessor)

- 6 years in development, 36 variations in 1992 (8 cells for $500k, 1088 for $30m)
 - 8 cells: 320 MFLOPS, 256 MB memory, 210 GB disk, 210 MB/s I/O
 - 1088 cells: 43 GFLOPS, 34 GB memory, 15 TB disk, 15 GB/s I/O

- Each system includes:
 - Processing Modules, each containing up to 32 APRD Cells including 1GB of ALLCACHE memory
 - Disk Modules, each containing 10 GB
 - I/O adapters
 - Power Modules, with battery backup

MediaCUBE Overview

- Emphasized on their web page; for delivery of interactive video to client devices over a network (from LAN-based training to video-on-demand to homes)
 - MediaCUBE 30 = 270 1.5 Mbps data streams, 750 hours of content
 - MediaCUBE 3000 = 20,000 & 55,000
Kendall Square Research KSR1 Processor Cells

- Each APRD (ALLCACHE Processor, Router, and Directory) Cell contains:
 - 64-bit Floating Point Unit, 64-bit Integer Processing Unit
 - Cell Execution Unit for address gen.
 - 4 Cell Interconnection Units, External I/O Unit
 - 4 Cache Control Units
 - 32 MB of Local Cache, 512 KB of subcache

- Custom 64-bit processor: 1.2 µm, each up to 450,000 transistors, packaged in 8x13x1 printed circuit board
 - 20 MHz clock
 - Can execute 2 instructions per cycle

Kendall Square Research KSR1 ALLCACHE System

- The ALLCACHE system moves an address set requested by a processor to the Local Cache on that processor
 - Provides the illusion of a single sequentially-consistent shared memory

- Memory space consists of all the 32 KB local caches
 - No permanent location for an “address”
 - Addresses are distributed and based on processor need and usage patterns
 - Each processor is attached to a Search Engine, which finds addresses and their contents and moves them to the local cache, while maintaining cache coherence throughout the system
 - 2 levels of search groups for scalability

Kendall Square Research KSR1 Programming Environment

- KSR OS = enhanced OSF/1 UNIX
 - Scalable, supports multiple computing modes including batch, interactive, OLTP, and database management and inquiry

- Programming languages
 - FORTRAN with automatic parallelization
 - C
 - PRESTO parallel runtime system that dynamically adjusts to number of available processors and size of the current problem
Cray T3D Overview

- NUMA shared-memory MIMD multiprocessor
- DEC Alpha 21064 processors arranged into a virtual 3D torus (hence the name)
 - 32–2048 processors, 512MB–128GB of memory, 4.2–300 GFLOPS
 - Parallel vector processor (Cray Y-MP or C90) acts as a host computer, and runs the scalar / vector parts of the program
 - Each processor has a local memory, but the memory is globally addressable
 - 3D torus is virtual — the physical layout includes redundant nodes that can be mapped into the torus if a node fails
- System contains:
 - Processing element nodes, Interconnect network, I/O gateways

T3D Processing Element Nodes

- Node contains 2 PEs; each PE contains:
 - DEC Alpha 21064 microprocessor
 - 150 MHz, 64 bits, double issue, 8/8 KB L1 caches
 - Support for L2 cache, eliminated in favor of improving latency to main memory
 - 16–64 MB of local DRAM
 - Access local memory: latency 87–253ns
 - Access remote memory: 1–2µs (~8x)
 - Alpha has 43 bits of virtual address space, only 32 bits for physical address space — external registers in node provide 5 more bits for 37 bit phys. addr.
- Node also contains:
 - Network interface
 - Block transfer engine (BLT) — asynchronously distributes data between PE memories and rest of system (overlap computation and communication)

T3D Interconnection Network and I/O Gateways

- Interconnection network
 - Between PE nodes and I/O gateways
 - 3D torus between routers, each router connecting to a PE node or I/O gateway
 - Dimension-order routing: when a message leaves a node, it first travels in the X dimension, then Y, then Z
- I/O gateways
 - Between host and T3D, or between T3D and an I/O cluster (workstations, tape drives, disks, and / or networks)
 - Hide latency:
 - Alpha has a FETCH instruction that can initiate a memory prefetch
 - Remote stores are buffered — 4 words accumulate before store is performed
 - BLT redistributes data asynchronously
Cray T3D Usage

- Processors can be divided into partitions
 - System administrator can define a set of processors as a pool, specifying batch use, interactive use, or both
 - User can request a specific number of processors from a pool for an application, MAX selects that number of processors and organizes them into a partition

- A Cray Y-MP C90 multiprocessor is used as a UNIX server together with the T3D
 - OS is MAX, Massively Parallel UNIX
 - All I/O is attached to the Y-MP, and is available to T3D
 - Shared file system between Y-MP & T3D
 - Some applications run on the Y-MP, others on the T3D, some on both

Cray T3D Programming

- Programming models
 - Message passing based on PVM
 - High-Performance FORTRAN — implicit remote accessing
 - MPP FORTRAN — implicit and explicit communication

- OS is UNICOS MAX, a superset of UNIX
 - Distributed OS with functionality divided between host and PE nodes (microkernels only on PE nodes)

Cray T3E Overview

- T3D = 1993, T3E = 1995 successor (300 MHz, $1M), T3E-900 = 1996 model (450 MHz, $.5M)

- T3E system = 6–2048 processors, 3.6–1228 GFLOPS, 1–4096 GB memory
 - PE = DEC Alpha 21164 processor (300 MHz, 600 MFLOPS, quad issue), local memory, control chip, router chip
 - L2 cache is on-chip so can't be eliminated, but off-chip L3 can and is
 - 512 external registers per process
 - GigaRing Channel attached to each node and to I/O devices and other networks
 - T3E-900 = same w/ faster processors, up to 1843 GFLOPS

Ohio Supercomputer Center (OSC) has a T3E with 128 PEs (300 MHz), 76.8 GFLOPS, 128 MB memory / PE

Convex Exemplar SPP-1000 Overview

- ccNUMA shared-memory MIMD
 - 4–128 HP PA 7100 RISC processors, up to 25 GFLOPS
 - 256 MB – 32 GB memory

- System made up of “hypernodes”, each of which contains 8 processors and 4 cache memories (each 64–512MB) connected by a crossbar switch
 - Hypernodes connected in a ring via Coherent Toroidal Interconnect, an implementation of IEEE 1596-1992, Scalable Coherency Interface
 - Hardware support for remote memory access
 - Keeps the caches at each processor consistent with each other
Convex Exemplar SPP-1000

- HP PA7100 RISC processor
 - 555,000 transistors, 0.8µ
- 64 bit wide, external 1MB data cache & 1MB instruction cache
 - Reads take 1 cycle, writes take 2
- Can execute one integer and one floating-point instruction per cycle
- Floating Point Unit can multiply, divide / square root, etc. as well as multiply-add and multiply-subtract
 - Most fp operations take two cycles, divide and square root take 8 for single precision and 15 for double precision
- Supports multiple threads, and hardware semaphore & synchronization operations

Silicon Graphics

POWER CHALLENGEarray Overview

- ccNUMA shared-memory MIMD
- “Small” supercomputers
 - POWER CHALLENGE — up to 144 MIPS R8000 processors or 288 MIPS R1000 processors, with up to 109 GFLOPS, 128 GB memory, and 28 TB of disk
 - POWERnode system — shared-memory multiprocessor of up to 18 MIPS R8000 processors or 36 MIPS R1000 processors, with up to 16 GB of memory
- POWER CHALLENGEarray consists of up to 8 POWER CHALLENGE or POWERnode systems
 - Programs that fit within a POWERnode can use the shared-memory model
 - Larger program can span POWERnodes

POWER CHALLENGEarray Programming

- Fine- to medium-grained parallelism
 - Shared-memory techniques within a POWERnode, using parallelizing FORTRAN and C compilers
- Medium- to coarse-grained parallelism
 - Shared-memory within a POWERnode or message-passing between POWERnode
 - Applications based on message-passing will run within a POWERnode, and libraries such as MPI or PVM will use the shared-memory instead
- Large applications
 - Hierarchical programming, using a combination of the two techniques
Silicon Graphics
Origin 2000 Overview

- ccNUMA shared-memory MIMD

- Various models, 2–128 MIPS R10000 processors, 16 GB – 1 TB memory, 6–200 GB/s peak I/O bandwidth
 - Largest model also supports 96 PCI cards and 160 Ultra SCSI devices
 - Processing node board contains two R10000 processors, part of the shared memory, directory for cache coherence, node interface, and I/O interface

- ccNUMA (SGI says they supply 95% of ccNUMA systems worldwide)
 - Crossbar switches that scale upwards

- Packaged solutions for business (file serving, data mining), Internet (media serving), & high-performance computing