DAP MCU and HCU

- Prototyped in 1976 by International Computers Limited (ICL), deliveries started in 1980

Matrix of PEs

- 32×32 for DAP 500, 64×64 for DAP 600
- Connection to 4 nearest neighbors (w/ wrap-around), plus column \& row buses
- Each PE is one bit wide, and has $32 \mathrm{~Kb}-1 \mathrm{Mb}$ of local memory

DAP system $=$ host + MCU + PE array

- Host (Sun or VAX) interacts with user - Host is used for program development and debugging, and for loading and initiating DAP programs
- Master control unit (MCU) runs main program (Fortran-Plus, APAL), broadcasts some instructions to PE array
- MCU (Master Control Unit)
- 32-bit 10 MHz CPU w/ registers, instruction counter, arithmetic unit, etc.
- Executes scalar instructions, broadcasts others to PE array

■ HCU (Host Connection Unit)

- Gateway between DAP and host
- Motorola 68020, SCSI port, VME interface, two RS232 serial ports
- Provides memory boundary protection, has EPROM for code storage, 1MB RAM for data and program storage
- Data transfers are memory-memory transfers across VME bus
- Provides medium-speed I/O plus fast data channels (e.g.,to high-resolution color display)

DAP Processing Element

3 1-bit registers

- $Q=$ accumulator, $C=$ carry, A = activity control (can inhibit memory writes in certain instructions)
- All bits of a register over all PEs is called a "register plane" (32x32 or 64×64 bits)

Adder

- Two inputs connect to Q and C registers
- Third input connects to multiplexor, from PE memory, output of Q or A registers, carry output from neighboring PEs, or data broadcast from MCU
- A register also get input from this mux
- Mux output can also be inverted
- PE outputs (adder and mux) can be stored in memory, under control of A reg
- D reg for asynchronous I/O, S ref for instructs that both read \& write to memory

PE Memory and MCU

■ PE Memory

- Each PE has between 32 Kb and 1 Mb
- Vector (horizontal) mode: successive bits of a word are mapped onto successive bits of a single row of a store plane
- Matrix (vertical) mode: successive bits... onto the same bit position in successive store planes
- MCU functionality
- Instruction fetch, decoding, and address generation
- Executes scalar instructions and broadcasts instruction streams to PEs
- Transmits data between PE array memory and MCU registers
- Transmits data between DAP and host file system or peripherals
- Code store (memory)
- 32 bit instructions, between 128 K words and 1 M words

32-bit general-purpose registers

- M0 - M13: general purpose, operated on by arithmetic and logical operations, can be transferred to and from memory array
- M1 - M7 can be used as "modifiers" for addresses and values

Machine states

- Non-privileged, interruptible (user mode)
- Privileged, interruptible
- Privileged, non-interruptible

Datum / limit regs. for address checking

- Addresses

- A 32-bit word, within a row or column, within a store plane
- "DO" instruction
- No hardware overhead for these loops
- HW support allows instructions inside the loops to access, in successive iterations, successive bit planes, rows, columns,or words of memory
- Nearest neighbor
- Specify direction in instruction for shifts
- For vector adds, specify whether rows or columns are being added, which direction to send carry bit
- Specify behavior at edge of operation

Gamma IIPlus

Fourth-generation DAP, produced by Cambridge Parallel Processing

- Gamma IIPlus $1000=32 \times 32$

Gamma IIPlus $4000=64 \times 64$
PE memory: $128 \mathrm{~Kb}-1 \mathrm{Mb}$
PE also contains an 8-bit processor

- 32 bytes of internal memory
- D register to transfer data to/from array memory (1 -bit data path) and to/from internal memory (8-bit data path)
- A register, similar to on 1-bit processor
- Q register, like accumulator, 32 bits wide (any one of which can be selected as an operand), can also be shifted
- ALU to provide addition, subtraction, and logical operations

