
1 Fall 1999, Lecture 18

Designing Parallel Algorithms

n This chapter — how to design algorithms
for a given parallel specification

n Four stages in designing a (MIMD)
parallel algorithm

● Partitioning
n Division of tasks into smaller tasks

n Focus is on maximizing parallelism
(concurrency)

n This is an abstract division, specific details
of communication and number of
processors is ignored for now

● Communication
n Determination of communication needed

to coordinate task execution
n Algorithms and communication methods

are determined

● Agglomeration

● Functional Decomposition

2 Fall 1999, Lecture 18

Designing Parallel Algorithms
(cont.)

n 4 stages in designing parallel algs (cont.)

● Agglomeration
n Evaluation of implementation costs and

performance of algorithms &
communication methods

n Combination of tasks as needed to reduce
development costs and improve
performance

● Mapping
n Maximize processor utilization

n Minimize communication costs

● Overall observations
n Partitioning & communication: focus on

concurrency and scalability, delay real
machine issues

n Agglomeration & mapping: Focus on
locality and machine specific performance
issues

3 Fall 1999, Lecture 18

Partitioning

n Define a large number of small tasks

● Should be an order of magnitude larger
than the number of processors to give
flexibility in later stages of alg. design

n Domain decomposition

● First, consider the data associated with
the problem and find appropriate partition
n If possible, decompose the data into small

pieces of roughly equal size

n Data partitioning may be based on
different data structures. If so, focus first
on either largest data structure, or one
accessed most frequently

● Then, associate operations with the data
set they are to be performed on and
produce a number of tasks
n Some operations will require data from

multiple tasks, and hence communication
between tasks will be necessary

4 Fall 1999, Lecture 18

Partitioning (cont.)

n Functional decomposition

● Attempt to divide the computation into
multiple different tasks
n If this division is possible, check to see if

the data needed by the different tasks is, in
general, disjoint

– If not, consider domain decomposition

● An alternative to domain decomposition,
may sometimes lead to a simpler solution

n Partitioning checklist (expected features):

● Order of mag. more tasks than processors

● Avoids redundant computation and storage

● Tasks of comparable size

● Number (not size) of tasks should scale as
problem size increases

● Explore the alternatives!!

5 Fall 1999, Lecture 18

Communication

n Overview

● Tasks typically require data from others

● When communication is necessary, we
must specify messages to be sent and
received on channels

● Setting up channels (even if that isn’t the
final implementation) helps to organize
and minimize communication costs

● Difficult to determine communication
needs in domain decomposition, much
easier in functional decomposition

n Communication patterns

● Local versus global
n Local — each task communicates with a

small number of neighboring tasks

n Global — … large number of tasks

6 Fall 1999, Lecture 18

Communication (cont.)

n Communication patterns (cont.)

● Structured versus unstructured
n Structured — communication between

tasks forms a regular graph (grid, tree…)

n Unstructured — communication between
tasks forms an arbitrary graph

● Static versus dynamic
n Static — identity of communication

partners does not change over time

n Dynamic — identity of communication
partners is determined at run time

● Synchronous versus asynchronous
n Synchronous — producer and consumer

cooperate to exchange data

n Asynchronous — consumer may have to
get data without cooperation of producer

7 Fall 1999, Lecture 18

Local versus Global Communication

n Local communication

● Example: Jacobi finite difference method
n Value stored at each grid location

n Values updated based on values of itself
and its 4 NEWS neighbors

n All grid values updated concurrently
n Parallel version different from sequential

version where latest information may be
“forced”

n Global communication

● Example: parallel reduction operation
n Sum of a set of values

n A single manager collects the values and
sums them, requires O(N) time as this
operation is essentially sequential

● Example: divide and conquer
n Use tree to collect intermediate sums and

pass them upwards to root,which
computes the final sum

8 Fall 1999, Lecture 18

Unstructured and Dynamic,
and Asynchronous, Communication

n Previous examples were all static,
structured communication

n Unstructured communication

● Example: Jacobi update on irregular
object
n More resolution needed in places

n Number of inputs vary by location

n May change over time as grid is refined

n Asynchronous communication

● Data-producing tasks are unable to
determine when their data-consuming
partners need data, so consumers must
explicitly request data from producers
n Data structure that is distributed among

tasks: task must periodically check for
data requests from other tasks

n Set of tasks responsible only for
maintaining and updating a set of data

9 Fall 1999, Lecture 18

Communication (cont.)

n Communication checklist (expected
features):

● All tasks perform the same number of
communication operations

● Each task communicates with only a
small number of neighbors

● Communication operations can proceed
concurrently

● Computation associated with the tasks
can proceed concurrently

