Designing Parallel Algorithms

m This chapter — how to design algorithms
for a given parallel specification

m Four stages in designing a (MIMD)
parallel algorithm

¢ Partitioning
m Division of tasks into smaller tasks

m Focus is on maximizing parallelism
(concurrency)

m This is an abstract division, specific details
of communication and number of
processors is ignored for now

e Communication

m Determination of communication needed
to coordinate task execution

m Algorithms and communication methods
are determined

e Agglomeration

e Functional Decomposition

Fall 1999, Lecture 18

Designing Parallel Algorithms
(cont.)

m 4 stages in designing parallel algs (cont.)

¢ Agglomeration

m Evaluation of implementation costs and
performance of algorithms &
communication methods

m Combination of tasks as needed to reduce
development costs and improve
performance

e Mapping
m Maximize processor utilization
m Minimize communication costs

e Overall observations
m Partitioning & communication: focus on
concurrency and scalability, delay real
machine issues
m Agglomeration & mapping: Focus on
locality and machine specific performance
issues

Fall 1999, Lecture 18

Partitioning

m Define a large number of small tasks

e Should be an order of magnitude larger
than the number of processors to give
flexibility in later stages of alg. design

m Domain decomposition

e First, consider the data associated with
the problem and find appropriate partition
m If possible, decompose the data into small
pieces of roughly equal size

m Data partitioning may be based on
different data structures. If so, focus first
on either largest data structure, or one
accessed most frequently

e Then, associate operations with the data
set they are to be performed on and
produce a number of tasks

m Some operations will require data from

multiple tasks, and hence communication
between tasks will be necessary

Fall 1999, Lecture 18

Partitioning (cont.)

m Functional decomposition

¢ Attempt to divide the computation into
multiple different tasks

m If this division is possible, check to see if
the data needed by the different tasks is, in
general, disjoint

— If not, consider domain decomposition

¢ An alternative to domain decomposition,
may sometimes lead to a simpler solution
m Partitioning checklist (expected features):

e Order of mag. more tasks than processors

Avoids redundant computation and storage

Tasks of comparable size

Number (not size) of tasks should scale as
problem size increases

Explore the alternatives!!

Fall 1999, Lecture 18




Communication

m Overview
e Tasks typically require data from others

¢ When communication is necessary, we
must specify messages to be sent and
received on channels

e Setting up channels (even if thatisn't the
final implementation) helps to organize
and minimize communication costs

¢ Difficult to determine communication
needs in domain decomposition, much
easier in functional decomposition

m Communication patterns

e Local versus global

m Local — each task communicates with a
small number of neighboring tasks

m Global — ... large number of tasks

Fall 1999, Lecture 18

Communication (cont.)

m Communication patterns (cont.)

e Structured versus unstructured

m Structured — communication between
tasks forms a regular graph (grid, tree...)

m Unstructured — communication between
tasks forms an arbitrary graph

e Static versus dynamic

m Static — identity of communication
partners does not change over time

m Dynamic — identity of communication
partners is determined at run time

e Synchronous versus asynchronous

m Synchronous — producer and consumer
cooperate to exchange data

m Asynchronous — consumer may have to
get data without cooperation of producer

Fall 1999, Lecture 18

Local versus Global Communication

m Local communication

e Example: Jacobi finite difference method
m Value stored at each grid location

m Values updated based on values of itself
and its 4 NEWS neighbors

m All grid values updated concurrently

m Parallel version different from sequential
version where latest information may be
“forced”

m Global communication

e Example: parallel reduction operation
m Sum of a set of values

m A single manager collects the values and
sums them, requires O(N) time as this
operation is essentially sequential

e Example: divide and conquer

m Use tree to collect intermediate sums and
pass them upwards to root,which
computes the final sum

Fall 1999, Lecture 18

Unstructured and Dynamic,
and Asynchronous, Communication

m Previous examples were all static,
structured communication

m Unstructured communication

e Example: Jacobi update on irregular
object
m More resolution needed in places
m Number of inputs vary by location
m May change over time as grid is refined

m Asynchronous communication

¢ Data-producing tasks are unable to
determine when their data-consuming
partners need data, so consumers must
explicitly request data from producers
m Data structure that is distributed among

tasks: task must periodically check for
data requests from other tasks

m Set of tasks responsible only for
maintaining and updating a set of data

Fall 1999, Lecture 18




Communication (cont.)

m Communication checklist (expected
features):

¢ All tasks perform the same number of
communication operations

e Each task communicates with only a
small number of neighbors

¢ Communication operations can proceed
concurrently

o Computation associated with the tasks
can proceed concurrently

Fall 1999, Lecture 18




