Designing Parallel Algorithms

m This chapter — how to design algorithms
for a given parallel specification

m Four stages in designing a (MIMD)
parallel algorithm

¢ Partitioning
m Division of tasks into smaller tasks

m Focus is on maximizing parallelism
(concurrency)

m This is an abstract division, specific details
of communication and number of
processors is ignored for now

e Communication

m Determination of communication needed
to coordinate task execution

m Algorithms and communication methods
are determined

e Agglomeration

e Functional Decomposition
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Designing Parallel Algorithms
(cont.)

m 4 stages in designing parallel algs (cont.)

¢ Agglomeration

m Evaluation of implementation costs and
performance of algorithms &
communication methods

m Combination of tasks as needed to reduce
development costs and improve
performance

e Mapping
m Maximize processor utilization
m Minimize communication costs

e Overall observations
m Partitioning & communication: focus on
concurrency and scalability, delay real
machine issues
m Agglomeration & mapping: Focus on
locality and machine specific performance
issues
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Partitioning

m Define a large number of small tasks

e Should be an order of magnitude larger
than the number of processors to give
flexibility in later stages of alg. design

m Domain decomposition

e First, consider the data associated with
the problem and find appropriate partition
m If possible, decompose the data into small
pieces of roughly equal size

m Data partitioning may be based on
different data structures. If so, focus first
on either largest data structure, or one
accessed most frequently

e Then, associate operations with the data
set they are to be performed on and
produce a number of tasks

m Some operations will require data from

multiple tasks, and hence communication
between tasks will be necessary
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Partitioning (cont.)

m Functional decomposition

¢ Attempt to divide the computation into
multiple different tasks

m If this division is possible, check to see if
the data needed by the different tasks is, in
general, disjoint

— If not, consider domain decomposition

¢ An alternative to domain decomposition,
may sometimes lead to a simpler solution
m Partitioning checklist (expected features):

e Order of mag. more tasks than processors

Avoids redundant computation and storage

Tasks of comparable size

Number (not size) of tasks should scale as
problem size increases

Explore the alternatives!!
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Communication

m Overview
e Tasks typically require data from others

¢ When communication is necessary, we
must specify messages to be sent and
received on channels

e Setting up channels (even if thatisn't the
final implementation) helps to organize
and minimize communication costs

¢ Difficult to determine communication
needs in domain decomposition, much
easier in functional decomposition

m Communication patterns

e Local versus global

m Local — each task communicates with a
small number of neighboring tasks

m Global — ... large number of tasks
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Communication (cont.)

m Communication patterns (cont.)

e Structured versus unstructured

m Structured — communication between
tasks forms a regular graph (grid, tree...)

m Unstructured — communication between
tasks forms an arbitrary graph

e Static versus dynamic

m Static — identity of communication
partners does not change over time

m Dynamic — identity of communication
partners is determined at run time

e Synchronous versus asynchronous

m Synchronous — producer and consumer
cooperate to exchange data

m Asynchronous — consumer may have to
get data without cooperation of producer
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Local versus Global Communication

m Local communication

e Example: Jacobi finite difference method
m Value stored at each grid location

m Values updated based on values of itself
and its 4 NEWS neighbors

m All grid values updated concurrently

m Parallel version different from sequential
version where latest information may be
“forced”

m Global communication

e Example: parallel reduction operation
m Sum of a set of values

m A single manager collects the values and
sums them, requires O(N) time as this
operation is essentially sequential

e Example: divide and conquer

m Use tree to collect intermediate sums and
pass them upwards to root,which
computes the final sum
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Unstructured and Dynamic,
and Asynchronous, Communication

m Previous examples were all static,
structured communication

m Unstructured communication

e Example: Jacobi update on irregular
object
m More resolution needed in places
m Number of inputs vary by location
m May change over time as grid is refined

m Asynchronous communication

¢ Data-producing tasks are unable to
determine when their data-consuming
partners need data, so consumers must
explicitly request data from producers
m Data structure that is distributed among

tasks: task must periodically check for
data requests from other tasks

m Set of tasks responsible only for
maintaining and updating a set of data
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Communication (cont.)

m Communication checklist (expected
features):

¢ All tasks perform the same number of
communication operations

e Each task communicates with only a
small number of neighbors

¢ Communication operations can proceed
concurrently

o Computation associated with the tasks
can proceed concurrently
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