
1 Fall 1999, Lecture 19

Agglomeration

n In this stage, we move from the abstract
toward the concrete

● Tasks are combined so as to produce
fewer tasks of larger size

● Determine whether it is useful to replicate
data and/or computation

● Sometimes it may be best to reduce the
number of tasks to exactly the number of
processors (i.e., combine the
Agglomeration and Mapping stages)

n Important issues to consider now

● Reducing communication costs by
increasing computation / communication
granularity

● Retaining flexibility with respect to
scalability and mapping decisions

● Reducing software engineering costs

2 Fall 1999, Lecture 19

Increasing Granularity

n A large number of fine-grained tasks
produces flexibility but not necessarily
efficiency

● Communication costs slow down
computation and decrease efficiency

n Can communication costs be reduced?

● Reduce time spent communicating

● Combine communication into fewer (but
larger) messages

● Combine (agglomerate) tasks that
communicate frequently with each other

n Communication and/or execution time
can often be decreased by replicating
computation

3 Fall 1999, Lecture 19

Replicating Computation

n 1-D array to collect & broadcast sum

● N–1 to collect sum, N–1 to broadcast,
total of 2(N–1) steps to get sum to all

n Tree to collect & broadcast sum

● lg N for sum, lg N for b’cast, 2 lg N steps
to get sum to all

● O(N lg N) computations / communications

n Ring

● N partial sums in motion simultaneously,
N–1 steps to get sum to all

● (N–1)N computations / communications

● (N–1)2 redundant comps. / comms.

n Butterfly (see figure 2.14)

● lg n steps, O(N lg N) operations

● No broadcast, no redundant operations!
4 Fall 1999, Lecture 19

More on Agglomeration

n Preserving flexibility

● Ability to create varying number of tasks
is critical if program is to be scalable

● Number of processors may change

● Mapping multiple tasks to one processor
allows one task to block during
communication, while permitting another
task to use that time for communication

● Still want more tasks than processors to
provide flexibility for mapping stage

n Reducing software engineering costs

● Parallelizing sequential code may best be
done by not changing the code any more
than necessary

● Considering parallel program as part of
some larger system may force a
particular data decomposition, or
necessitate a restructuring phase

5 Fall 1999, Lecture 19

Agglomeration Checklist

n Reduction in communication costs
through increased locality

n Replicated communication: benefits
outweigh the costs for a range of problem
sizes and processor counts

● Replicated data: does not compromise
scalability by restricting problem sizes and
processor counts

n Number of tasks scales with problem size

n Tasks with similar computation and
communication costs

● Sufficient concurrency for current and
future target computers

n Smallest number of tasks that does not
introduce load imbalances, increase S.E.
costs, or reduce scalability

6 Fall 1999, Lecture 19

Mapping

n Minimize execution time by either:

● Place tasks that execute concurrently on
different processors

● Place tasks that communicate frequently
on the same processor

n This is an NP-complete problem

● Domain decomposition with fixed number
of equal-sized tasks and structured
comm. has straight-forward mapping

● Domain decomposition with varying work
per task or unstructured comm. requires
heuristic or probabilistic load balancing

● Domain decomposition with changing
work per task or communication requires
dynamic load balancing

● Functional decomposition yields short-
lived tasks that are task-scheduled onto
idle processors

7 Fall 1999, Lecture 19

Load-Balancing Algorithms

n Used to agglomerate fine-grained tasks
from an initial partition into one coarse-
grained task per processor

n Recursive bisection

● Partition into sub-domains of
approximately equal size while attempting
to minimize communication costs

● Typically using divide-and-conquer
(allows parallel computation)

● Recursive coordinate bisection
n Subdivide on longer dimension based on

grid coordinates

● Unbalanced recursive bisection
n Try different aspect ratios instead of

automatically dividing in half

● Recursive graph bisection
n Reduce the number of edges crossing

sub-domain boundaries

8 Fall 1999, Lecture 19

Load-Balancing Algorithms
(cont.)

n Local algorithms

● Avoid the global knowledge required by
recursive bisection, use only local info from
small number of neighbors

● Example: compare load to that of
neighbors, transfer computation if
difference exceeds some threshold

● Useful but slow to adjust to major changes

n Probabilistic methods

● Random allocation of tasks to processors

● Many tasks should equalize load

● Can require a lot of communication
between processors

n Cyclic mappings

● Each processor is allocated every Pth task

● May increase communication cost

9 Fall 1999, Lecture 19

Task-Scheduling Algorithms

n Used when there are many tasks with
weak locality requirements

● Maintain a task pool, from which tasks are
taken for allocation to processors
(problems are given to workers to process)

● Try to minimize communication while also
maximize processor utilization

n Manager / worker

● Central task manager responsible for
problem allocation

● Improve efficiency by prefetching problems
and caching problems at workers

n Hierarchical manager / worker

● Divide workers into disjoint sets, each with
a sub-manager

● Sub-managers communicate periodically
to balance the load

10 Fall 1999, Lecture 19

Task-Scheduling Algorithms
(cont.)

n Decentralized schemes

● Task pool on each processor, idle
workers request problems from other
processors (either neighbors, or
processors randomly selected)

● Can also have a central manager that
allocates problems in round-robin fashion
(bottleneck, but less so than in
manager/worker model)

n Termination detection

● Need a mechanism to determine when
search is complete, so idle workers will
eventually stop requesting work if there
isn’t any to perform

● Easy for a central manager to do, but
more difficult in decentralized scheme
since there isn’t a central record of who is
idle, and messages may be in transit

11 Fall 1999, Lecture 19

Mapping Checklist

n SPMD design: also consider dynamic
task creation and deletion (simpler,
problematic performance)

n Dynamic task creation and deletion
design: also consider SPMD algorithm
(more control, but more complex)

n Centralized manager must not be a
bottleneck

n Dynamic load-balancing algorithms:
examine different strategies, consider
simple probabilistic or cyclic mappings

n Probabilistic or cyclic mappings: need
large enough number of tasks to ensure
reasonable load balance

