
1 Fall 1999, Lecture 20

Case Study: Atmosphere Model

n Simulation of atmosphere for weather
prediction, studying climate, etc.

n Must solve a set of partial differential
equations describing the basic fluid
dynamical behavior of the atmosphere

n 3D grid of values

n Time integration to determine state at
future time, based on current state

n Stepwise refinement using finite
difference method, 9-point stencil in
horizontal direction, 3-point in vertical

● Fluid dynamics of the atmosphere

● Physics computations: radiation,
convection, and precipitation simulations
within vertical columns

2 Fall 1999, Lecture 20

Atmosphere Model Algorithm Design

n Partitioning

● Domain decomposition is a logical choice

● For maximum possible concurrency, use
one task per grid point

n Communication

● 3 distinct computations
n Finite difference stencils

– 9-point horizontal (each communicates
with 8 neighbors)

– 3-point vertical (with 2 neighbors)

n Global operations
– Computes total mass of atmosphere to

verify simulation is proceeding correctly
– Parallel summation

n Physics computations
– Prefix product over each vertical column

– On the order of 30 communications per
grid point and per time step

– This component is a bit problematic with
respect to communication

3 Fall 1999, Lecture 20

Atmosphere Model Algorithm Design
(cont.)

n Agglomeration

● Approximately 105 to 107 tasks

● Agglomeration to 4 (2x2) horizontal grid
points per task reduces communication
form 8 to 4 messages per time step

● Agglomeration in vertical direction avoids
communication for the finite difference
stencil (2 messages) as well as physics
computation (30 messages)
n Also avoids software engineering costs

because can reuse sequential code

n Mapping

● Simple straight-forward mapping, yielding
a SPMD program with each processor
responsible for several columns

● May be unbalanced if physics
computations vary from region to region;
if so, consider a cyclic mapping

4 Fall 1999, Lecture 20

Case Study: Floorplan Optimization

n Layout of a full-custom ASIC
(application-specific integrated circuit)

● Production of a set of indivisible
rectangular blocks, called cells

● Relative placement determined using
interconnection information

● Floorplan optimization: implementations
are selected for each cell so as to
minimize the total area

n The problem

● Alternative implementations for each cell,
with varying areas and aspect ratios
(length and width)

● G and H graphs that specify which cells
must be adjacent in the vertical and
horizontal directions, respectively

● Find the implementation that minimizes
total area, subject to G and H constraints

5 Fall 1999, Lecture 20

Floorplan Optimization
Algorithm Design

n Explore a search tree representing all
possible configurations

● Level i corresponds to implementations
chosen for i cells

● Feasible only for small implementations

n Branch and bound search

● If the area of a node in the tree is greater
than the best known solution so far, the
subtree rooted at this node can be
abandoned (or pruned)
n In one experiment, pruning reduced

number of nodes from 4x1015 to 6x106

● Difficulties
n Must keep track of best (lowest area)

solution seen so far

n Must manage the order in which the tree is
explored (preferably depth-first search)

6 Fall 1999, Lecture 20

Floorplan Optimization
Algorithm Design (cont.)

n Partitioning

● No obvious data structure for domain
decomposition

● Use fine-grained functional decomp., one
task for each search tree node
n Tasks will be created as a wavefront, and

tree will tend to be explored breadth-first

n Only tasks on the wavefront can execute
concurrently

n How to handle best solution so far?
Assume a single task maintains it

n Communication

● Tasks must obtain and update best soln.

● Centralized task to maintain best solution
n Simple, may work, but not very scalable

n Check with manager only periodically

n Use subtrees, each with a submanager
n May need performance model to evaluate

7 Fall 1999, Lecture 20

Floorplan Optimization
Algorithm Design (cont.)

n Agglomeration

● Create one task for each search until the
search reaches a certain depth, then
switch to depth-first search and evaluate
sequentially

● Tasks are presumably (?) executed in the
order they are created
n Tends toward breadth-first search

n Must control this search order in mapping

n Mapping

● Task scheduling: tasks become problems
executed by worker tasks

● Central manager explore search tree to
some depth, then creates worker tasks on
demand and assigns them to idle workers
n Some pruning possible

n Each processor executes a whole subtree,
so can do some more pruning

