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Embarrassingly Parallel Computations

n Embarrassingly parallel computation

● Can be divided into completely
independent parts, no communication
between the parts

● Data is not shared, but computations may
be the same (SPMD model)

n Nearly embarrassingly parallel

● Results must be distributed and collected
and combined in some way

● Manager & workers, but minimal
interaction between workers

● Workers may be created dynamically or
statically

● If processors are different (e.g.,
networked workstations) load-balancing
techniques may be necessary
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Geometrical Transformation of Images

n Processing of 2D images

● Move image in display space, change its
size, rotate it in 2 or 3 dimensions

● Smoothing, edge detection

n Image is stored as a pixmap, each pixel
as a binary number in a 2D array

● Geometrical transformations affect the
coordinates of each pixel to move its
position without affecting its value

n Geometrical transformations

● Shifting — in x or y dimension, or both

● Scaling — magnification or reduction

● Rotation — by some angle

● Clipping — deletes points outside a
specified rectangle
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Geometrical Transformation of Images
(cont.)

n Main concern is division into groups of
pixels for each processor (many more
pixels than processors!)

● Usually either by square/rectangular
regions, or by columns/rows

● Doesn’t matter here because no
communication needed between regions

n Example:

● Master process and 48 slave processors

● Image of 480 rows x 640 columns

● Each slave processes 10 rows x 640
columns

● Approach (details in figure):
n Master sends rows to processes, gets

back old and new coordinates, and copies
values in image from old to new
coordinates

n Slaves add offsets to coordinates
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Geometrical Transformation of Images
(cont.)

Master:

for (i = 0, row = 0 ; i < 48 ; i++, row = row+10) /* for each process */
send(row, Pi); /* send row number */

for (i = 0 ; i < 480 ; i++) /* initialize temp */
for (j = 0 ; j < 640 ; j++)

temp_map[i][j] = 0;

for (i = 0 ; i < (640*480) ; i++) { /* for each pixel */
recv(oldrow,oldcol,newrow,newcol, Pany) /*accept new coords */
if !((newrow<0)||(newrow>=480)||(newcol<0)||(newcol>=640))

temp_map[newrow][newcol]=map[oldrow][oldcol];
}
for (i = 0 ; i < 480 ; i++) /* update bitmap */

for (j = 0 ; j < 640 ; j++)
map[i][j] = temp_map[i][j];

Slave:

recv(row, Pmaster); /* receive row num */
for (oldrow = row ; oldrow < (row+10) ; oldrow++)

for (oldcol = 0 ; oldcol < 640 ; oldcol++) { /* transform coords */
newrow = oldrow + delta_x; /* shift in x direction */
newcol = oldcol +delta_y; /* shift in y direction */
send(oldrow,oldcol,newrow,newcol, Pmaster);    /* to master */

}
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Geometrical Transformation of Images
(cont.)

n Analysis of example:

● Assume n x n pixels, one computation
step per pixel, sequential time is O(n2)

● Communication
n tcomm = p(tstartup + 2tdata) + 4n2(tstartup + tdata)

= O(p+n2)

n Sending row numbers:  p sends, each with
a startup cost and 2 data items to send

n 4n2 data items returned to master, each
received sequentially

● Computation
n tcomp = 2(n2 / p) = O(n2 / p)
n Image divided into groups of n2 / p pixels

n Each pixel requires 2 additions

● Overall execution time
n For constant p, O(n2)

n Constant for communication may be far
bigger than that for computation (e.g., 4n2

+ p startup times, each 5µs for Ethernet)
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Mandelbrot Set

n Displaying the Mandelbrot Set

● Set of points in the complex plane that
are computed by iterating a function until
z becomes greater than a specified value
or the number of iterations exceeds a
specified limit

● Result is displayed as a 2D image of the
complex plane, after the image is scaled
to match the coordinate system of the
display (very computationally intensive)

● Regions of the display can be selected
and magnified to produce visually
pleasing pictures

n Each pixel can be computed without info
from neighbors, but amount of
computation per pixel can vary

● Consider both static and dynamic task
assignment
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Mandelbrot Set
(cont.)

n Static task assignment

● Give each worker 10 rows as before

● Order in which processed pixels are
received by master depends on number
of iterations to compute its value

● Same problems as before in that results
are sent back one at a time

n Dynamic task assignment

● Use load balancing so all processors
complete at same time

● Can not assign different-sized regions to
different processors — do not know
required number of iterations in advance

● Use a work pool, which holds a set of
tasks to be performed
n Processing a pixel = task

n Number of tasks is fixed in advance

n Idle processor requests task from the pool
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Mandelbrot Set
(cont.)

n Example:

● 480 x 640 image as before

● Processes compute entire rows as a task

● Approach (details in figure):
n Each slave is first given one row to process,

and then it gets another row when it returns
a result until there are no more rows to
compute

n Master sends a termination message when
all rows have been taken

n Different tags for rows sent to slaves,
termination message, and results

n Analysis of example:

● Difficult to analyze since it’s impossible to
know in advance how many iterations are
necessary, although there is a limit of max

● Sequential time is <= (max)(n), or O(n)
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Mandelbrot Set
(cont.)

Master:

count = 0; /* counter for termination */
row = 0; /* row being sent */
for (k = 0 ; k < procno ; k++) { /* assuming procno<disp_height */

send(&row, Pk, datatag); /* send initial row to process */
count++; /* count rows sent */
row++; /* next row */

}
do {

recv(&slave, &r, color, Pany, result_tag);
count--; /* reduce count as rows received */
if (row < disp_height) {

send(&row, Pslave, data_tag); /* send next row */
row++; /* next row */
count++;

} else
send(&row, Pslave, terminator_tag); /* terminate */

rows_recv++;
display(r, color); /* display row */

} while (count >0);

Slave:

recv(y, Pmaster, ANYTAG, source_tag);    /* receive 1st row to compute */
while (source_tag == data_tag) {

c.imag = imag_min + ((float) y * scale_img);
for (x = 0 ; x < disp_width ; x++) { /* compute new row colors */

c.real = real_min + ((float) x * scale_real);
color[x] = cal_pixel(c);

}
send(&i, &y, color, Pmaster, result_tag); /* row colors to master */
recv(y, Pmaster, source_tag); /* receive next row */

}
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Mandelbrot Set
(cont.)

n Analysis of example (cont.):

● Communication
n tcomm1 = s(tstartup + tdata)

n Row number sent to each slave, one data
item to each of s slaves

● Computation
n tcomp <= (max x n)/s

n All slaves compute in parallel, assuming
the pixels are evenly divided across the
processors

● Communication
n tcomm2 = (n/s)(tstartup + tdata)

n Results passed back to master using
individual sends

● Overall execution time
n tp <= (max x n)/s + (n/s +s)(tstartup + tdata)

n Where number of processors p = s+1

n Speedup approaches p-1 if max is large
n Parallelizing this example appears to be

worthwhile


