Partitioning, Revisited

m Partitioning

e Embarrassingly parallel examples last
time used partitioning

e Most partitioning formulations require
results form the partitions to be combined
to yield the final result

e Data/domain decomposition versus
functional decomposition

m Example: sum a sequence of numbers

¢ Divide sequence of n numbers into n/m
parts, for m processors

e Approach (details in figure):

m Master sends numbers to slaves, slaves
add their numbers (concurrently) and then
send partial sums to master, master adds
partial sums to produce final sum

m Perhaps use broadcast to send entire list
to every slave (is this better? depends on
implementation of broadcast)

Fall 1999, Lecture 29

Partitioning, Revisited
(cont.)

Master:
s=n/m; /* number of numbers for slaves */
for(i=0,x=0;i<m;it+,x=x+5)
send(&numbers|x], s, Pi); [*send s numbers to slave */
result = 0;
for(i=0;i<m;i++){
recv(&part_sum, Pany);
sum = sum + part_sum;

/* wait for results from slaves */

/* accumulate partial sums */

Slave:

recv(numbers, s, Pmaster);

sum =0;

for(i=0;i<s;i++) /* add numbers */
part_sum = part_sum + numbersl[i];

send(&part_sum, Pmaster); /* send sum to master */

I* receive s nums from master */

Master with broadcast:
s =n/m; /* number of numbers for slaves */
broadcast(numbers, s, Pslave_group); /*send all numbers to slaves */

Slave with broadcast:
broadcast(numbers, s, Pmaster);
start = slave_number * s;

end = start + s;

sum =0;

for (i=start; i<end;i++)

[*receive all nums from master */
/*slave number obtained earlier */

/* add numbers */

Fall 1999, Lecture 29

Partitioning, Revisited
(cont.)

Master with broadcast:
s=n/m; /* number of numbers for slaves */
broadcast(numbers, s, Pslave_group); /*send all numbers to slaves */

result = 0;

for(i=0;i<m;i++){
recv(&part_sum, Pany);
sum = sum + part_sum;

/* wait for results from slaves */

/* accumulate partial sums */

}

Slave with broadcast:
broadcast(numbers, s, Pmaster);
start = slave_number * s;

end = start + s;

/*receive all nums from master */
[*slave number obtained earlier */

sum = 0;
for (i=start;i<end;i++) /* add numbers */
part_sum = part_sum + numbersl[i];

send(&part_sum, Pmaster); /* send sum to master */

Master with scatter:

s =n/m; /* number of numbers */
scatter(numbers, s, Pgroup, root=master); /* send numbers to slaves */
reduce_add(&sum, &s, Pgroup, root=master); /* results from slaves */

Slave with scatter and reduce:
gather(my_nums, s, Pgroup, root=master); /* receive s numbers */
reduce_add(&part_sum, &s, Pgroup, root=master); /* partial sum to mast */

3 Fall 1999, Lecture 29

Partitioning, Revisited
(cont.)

m Analysis of example:

e Sequential computation requires n—1
additions, complexity of O(n)

¢ Communication

u tcomml = m(tstartup + (n/m)tdata)
m m slave processors, master sending n/m
numbers to each

mt =t + nty,,, With scatter/gather

comml startup

e Computation
comp1 = N/M—1
m Each slave adds n/m numbers, in parallel

mt

¢ Communication
u tcomm2 = m(tstartup + tdata)
m Each slave sends partial result to master

mt =t + mty,,, With reduce

comm2 startup

e Computation
[tC0mp2 =m-1

m Master adds the m partial sums

Fall 1999, Lecture 29

Partitioning, Revisited
(cont.)

m Analysis of example (cont.)

e Overall execution time

u (tstanup + ntdata) + (tstartup + mtdata) +
(nfm-1)+(mM-1)=
2tstartup + (n+m)tdata +n/m+m-2
m O(n+m)
— Worse than sequential version!!

e What if communication is ignored?
m Speedup = (n-1) / (/m+m-2)
m For large n, speedup tends toward m

m For small n, speedup is low and worsens
for an increasing number of slaves

Fall 1999, Lecture 29

Divide and Conquer

m Divide and conquer

¢ Divide a problem into subproblems that
are of the same form as the larger
problem, then keep doing this recursively

e Continue until it's not possible to divide
further, then solve the small subproblems

¢ Combine all the results, then continue this
combining with larger subproblems

m Example: sum a sequence of numbers

e Sequential approach (details in figure):
m Need a method for termination
— If 2 numbers, they are n1 and n2
— If 1 number, it is n1 and n2 is zero
— if 0 numbers, nl1 and n2 are both zero
m Can also use this method for other
operations, e.g. finding maximum value

m Can sort a list by dividing it into smaller
and smaller lists (mergesort, quicksort)

Fall 1999, Lecture 29

Divide and Conquer
(cont.)

Sequential:

int add(int *s)

{

/* add a list of numbers */

if (number(s) <= 2) return (n1+n2);
else {
Divide(s, s1, s2); /* divide s into s1 and s2 */
part_sum = add(s1); [* recursive calls to add */
part_sum = add(s2); /* the sub lists */
return(part_suml+part_sum?2);

/* see explanation */

Fall 1999, Lecture 29

Divide and Conquer
(cont.)

m Example: sum a sequence of numbers

o Parallel approach (details omitted):

m Think of processing a tree, where a
division of the problem into to parts
produces two subtrees,and assign one
processor to each node in the tree

— Requires 2m1-1 processors for a task
divided into 2™ parts

— Inefficient because each processor is
active only at one level in the tree

m Reuse processors at each level

— Stop the division when the total number of
processors has been committed

— Until then, at each stage each processor
keeps half the list and passes on the other
half (PO to P4, then PO to P2 and P4 to
P6, then those to P1, P3, P5, and P7)

— At final stage each list has n/8 numbers,
n/p in general for p processors

— Combining partial sums works in reverse

— Particularly appropriate on a hypercube:
processors communicate with processors
that differ by the most significant bit

Fall 1999, Lecture 29

Divide and Conquer
(cont.)

m Analysis of example:
e Assume n is a power of 2

e Startup time is not included in the
analysis, but left as an exercise

e The division phase consists mostly of
communication, since the division is easy

e The combining phase requires both
computation and communication

¢ Communication (division phase)
u tcomml = (nlz)tdata + (n/4)tdata + (n/8)tdata

= (n(p_l)/p)tdata
m Slightly better than simple broadcast

e Computation (end of division phase)

m toomp = n/p + logp
m n/p numbers are added together, then one
addition at each stage during combination

m O(n) for constant p, O(n/p) for large n and
variable p

Fall 1999, Lecture 29

Divide and Conquer
(cont.)

m Analysis of example (cont.)

¢ Communication (combining phase)

u tcomm2 = |ng tdata
m Only one data item (the partial sum) sent
each time

m Total communication time is
(n(p_l)/p)tdata + |ng tdata
m O(n) for constant p

e Overall execution time
m (N(P—1)/P)tyaa + 109P tyaa + N/p + logp
m O(n) for constant p
— Speedup will be less than p due to division
and combining phases
e Additional comments

m Can break the task into more than 2 parts
at each stage, resulting in a quadtree (4),
and octtree (8), or in general an m-ary tree

10 Fall 1999, Lecture 29

