Partitioning, Revisited

Partitioning

- Embarrassingly parallel examples last time used partitioning
- Most partitioning formulations require results form the partitions to be combined to yield the final result
- Data/domain decomposition versus functional decomposition

Example: sum a sequence of numbers

Divide sequence of n numbers into n / m parts, for m processors

- Approach (details in figure):
- Master sends numbers to slaves, slaves add their numbers (concurrently) and then send partial sums to master, master adds partial sums to produce final sum
- Perhaps use broadcast to send entire list to every slave (is this better? depends on implementation of broadcast)

Partitioning, Revisited (cont.)

```
Master with broadcast:
\[
\mathrm{s}=\mathrm{n} / \mathrm{m}
\]
broadcast(numbers, s, Pslave_group);
result = 0;
for (i=0;i<m ; i++) { /* wait for results from slaves */
    recv(&part_sum, Pany);
    sum = sum + part_sum;
}
Slave with broadcast:
broadcast(numbers, s, Pmaster); /*receive all nums from master */
start = slave_number * s; /*slave number obtained earlier */
end = start + s;
sum = 0;
for (i = start ; i < end ; i++) /* add numbers */
    part_sum = part_sum + numbers[i];
send(&part_sum, Pmaster); /* send sum to master */
```

[^0]
Slave with scatter and reduce:

gather(my_nums, s, Pgroup, root=master); /* receive s numbers */ reduce_add(\&part_sum, \&s, Pgroup, root=master); /* partial sum to mast */

Partitioning, Revisited (cont.)

Master:

$\begin{aligned} & \overline{s=n / m ;} \\ & \text { for }(i=0, x=0 ; i<m ; i++, x=x+s) \\ & \quad \operatorname{send}(\text { \&numbers }[x], s, P i) ; \end{aligned}$	/* number of numbers for slaves */ /*send s numbers to slave */
```result = 0; for (i=0;i<m ; i++) { recv(&part_sum, Pany); sum = sum + part_sum;```	/* wait for results from slaves */   /* accumulate partial sums */

\}

## Slave:

recv(numbers, s, Pmaster); /* receive s nums from master */
sum = 0;

```
for (\(\mathrm{i}=0 ; \mathrm{i}<\mathrm{s} ; \mathrm{i}++\))
/* add numbers */
```

part_sum = part_sum + numbers[i];
send(\&part_sum, Pmaster);
/* send sum to master */

Master with broadcast:
$\mathrm{s}=\mathrm{n} / \mathrm{m}$;
/* number of numbers for slaves */
broadcast(numbers, s, Pslave_group); /*send all numbers to slaves */

Slave with broadcast:
broadcast(numbers, s, Pmaster);
/*receive all nums from master */ start = slave_number * s;
/*slave number obtained earlier */
end = start + s;
sum = 0;
for ( $\mathrm{i}=$ start $; \mathrm{i}$ < end ; $\mathrm{i}++$ ) add numbers */

## Partitioning, Revisited (cont.)

## Analysis of example:

- Sequential computation requires $\mathrm{n}-1$ additions, complexity of $O(n)$
- Communication
- $\mathrm{t}_{\text {comm1 }}=\mathrm{m}\left(\mathrm{t}_{\text {startup }}+(\mathrm{n} / \mathrm{m}) \mathrm{t}_{\text {data }}\right)$
- m slave processors, master sending $\mathrm{n} / \mathrm{m}$ numbers to each
- $\mathrm{t}_{\text {comm1 }}=\mathrm{t}_{\text {startup }}+\mathrm{nt}_{\text {data }}$ with scatter/gather
- Computation
- $\mathrm{t}_{\text {comp } 1}=\mathrm{n} / \mathrm{m}-1$
- Each slave adds $\mathrm{n} / \mathrm{m}$ numbers, in parallel
- Communication
- $\mathrm{t}_{\text {comm2 }}=\mathrm{m}\left(\mathrm{t}_{\text {startup }}+\mathrm{t}_{\text {data }}\right)$
- Each slave sends partial result to master
- $\mathrm{t}_{\text {comm2 }}=\mathrm{t}_{\text {startup }}+\mathrm{mt}_{\text {data }}$ with reduce
- Computation
- $\mathrm{t}_{\text {comp2 }}=\mathrm{m}-1$
- Master adds the m partial sums


## Partitioning, Revisited (cont.)

## Analysis of example (cont.)

- Overall execution time
- $\left(t_{\text {startup }}+n t_{\text {data }}\right)+\left(t_{\text {startup }}+m t_{\text {data }}\right)+$ $(n / m-1)+(m-1)=$ $2 t_{\text {startup }}+(n+m) t_{\text {data }}+n / m+m-2$
- $\mathrm{O}(\mathrm{n}+\mathrm{m})$
- Worse than sequential version!!
- What if communication is ignored?
- Speedup $=(\mathrm{n}-1) /(\mathrm{n} / \mathrm{m}+\mathrm{m}-2)$
- For large n , speedup tends toward $m$
- For small n , speedup is low and worsens for an increasing number of slaves


## Divide and Conquer

## - Divide and conquer

- Divide a problem into subproblems that are of the same form as the larger problem, then keep doing this recursively
- Continue until it's not possible to divide further, then solve the small subproblems
- Combine all the results, then continue this combining with larger subproblems


## ■ Example: sum a sequence of numbers

- Sequential approach (details in figure):
- Need a method for termination
- If 2 numbers, they are n 1 and n 2
- If 1 number, it is n 1 and n 2 is zero
- if 0 numbers, n 1 and n 2 are both zero
- Can also use this method for other operations, e.g. finding maximum value
- Can sort a list by dividing it into smaller and smaller lists (mergesort, quicksort)


## Divide and Conquer (cont.)

Sequential:
int add(int *s)
\{

```
 if (number(s) <= 2) return (n1+n2);
 else{
 Divide(s, s1, s2);
 part_sum = add(s1);
 part_sum = add(s2);
 return(part_sum1+part_sum2);
 }
```

\}

## Divide and Conquer (cont.)

- Example: sum a sequence of numbers
- Parallel approach (details omitted):
- Think of processing a tree, where a division of the problem into to parts produces two subtrees, and assign one processor to each node in the tree
- Requires $2^{m+1}-1$ processors for a task divided into $2^{m}$ parts
- Inefficient because each processor is active only at one level in the tree
- Reuse processors at each level
- Stop the division when the total number of processors has been committed
- Until then, at each stage each processor keeps half the list and passes on the other half ( P 0 to P 4 , then P 0 to P 2 and P 4 to P6, then those to P1, P3, P5, and P7)
- At final stage each list has n/8 numbers, $\mathrm{n} / \mathrm{p}$ in general for p processors
- Combining partial sums works in reverse
- Particularly appropriate on a hypercube: processors communicate with processors that differ by the most significant bit


## Divide and Conquer <br> (cont.)

## Analysis of example:

- Assume n is a power of 2
- Startup time is not included in the analysis, but left as an exercise
- The division phase consists mostly of communication, since the division is easy
- The combining phase requires both computation and communication
- Communication (division phase)
- $\mathrm{t}_{\text {comm } 1}=(\mathrm{n} / 2) \mathrm{t}_{\text {data }}+(\mathrm{n} / 4) \mathrm{t}_{\text {data }}+(\mathrm{n} / 8) \mathrm{t}_{\text {data }} \cdots$ $=(n(p-1) / p) t_{\text {data }}$
- Slightly better than simple broadcast
- Computation (end of division phase)
- $\mathrm{t}_{\text {comp }}=\mathrm{n} / \mathrm{p}+$ logp
- $\mathrm{n} / \mathrm{p}$ numbers are added together, then one addition at each stage during combination
- $O(n)$ for constant $p, O(n / p)$ for large $n$ and variable $p$


## Divide and Conquer

- Analysis of example (cont.)
- Communication (combining phase)
- $\mathrm{t}_{\text {comm2 }}=\operatorname{logp} \mathrm{t}_{\text {data }}$
- Only one data item (the partial sum) sent each time
- Total communication time is $(n(p-1) / p) t_{d a t a}+\log p t_{\text {data }}$
- O(n) for constant p
- Overall execution time
- $(\mathrm{n}(\mathrm{p}-1) / \mathrm{p}) \mathrm{t}_{\text {data }}+\log \mathrm{t} \mathrm{t}_{\text {data }}+\mathrm{n} / \mathrm{p}+\log \mathrm{p}$
- O(n) for constant p
- Speedup will be less than $p$ due to division and combining phases
- Additional comments
- Can break the task into more than 2 parts at each stage, resulting in a quadtree (4), and octtree (8), or in general an m-ary tree


[^0]:    Master with scatter:
    $\mathrm{s}=\mathrm{n} / \mathrm{m}$;
    /* number of numbers */ scatter(numbers, s, Pgroup, root=master); /* send numbers to slaves */ reduce_add(\&sum, \&s, Pgroup, root=master); /* results from slaves */

