

Introduction to PVM
A 1 Day Course

Slides

Martin Preston

Manchester and North HPC Training & Education Centre

Introduction to PVM 1 Manchester & North HPC T&EC

Introduction to
PVM

Introduction to PVM 2 Manchester & North HPC T&EC

Course Introduction

Introduction to PVM 3 Manchester & North HPC T&EC

 Course Outline

❑ We will cover:

■ A short reminder of the basic concepts of
message passing as a parallel programming
paradigm.

■ The concept of executing your program on a
distributed virtual machine (VM).

■ How PVM attempts to provide the illusion of a
single computing resource.

■ How an application programmer creates
programs on the VM.

■ How a user interacts with these programs on the
VM.

■ How messages are passed between programs
executing on the machine.

Introduction to PVM 4 Manchester & North HPC T&EC

 Cont.

■ How collections of programs may be managed
easily by the application programmer.

■ How PVM provides some higher level parallel
programming features.

■ An example of how a sample application might be
constructed using PVM, a ray tracer.

■ A summary of the features of PVM, and what else
you might want to use.

Introduction to PVM 5 Manchester & North HPC T&EC

Introduction to
Message Passing

Introduction to PVM 6 Manchester & North HPC T&EC

 Parallel Programming

❑ Why Parallel Programming?

❑ Certain classes of problems are either:

■ Too large for available serial architectures.

■ Take too long to execute on serial machines.

■ Don’t handle large loads well, e.g., a database
server which operates well with 10 users, but
when 100 people use it the performance suffers.

Introduction to PVM 7 Manchester & North HPC T&EC

 The promise of Parallel
programs

❑ So, as a programmer, we are forced to
turn to parallel machines as a possible
solution to our problems.

❑ Parallel processing claims to be

■ Cheaper, in terms of Price/Performance.

■ Faster than equivalently expensive uniprocessor
machines.

■ Scalable : the performance of a particular
program may be improved by execution on a
large machine.

■ Reliable? In theory if processors fail we can
simply use others.

■ Handle bigger problems.

❑ But to use parallel machine we must
employ parallel programming.

Introduction to PVM 8 Manchester & North HPC T&EC

 What is Parallel
Programming?

❑ Concurrent operation of elements within a
system

❑ Low-level hardware has been parallel for
many years. e.g., overlapped I/O, multi-
tasking. Traditionally this parallelism is
hidden from the user.

❑ Machines which allow the user to take
advantage of parallelism are normally
referred to as parallel machines, to
distinguish from conventional
architectures.

Introduction to PVM 9 Manchester & North HPC T&EC

 How do we take
advantage of parallel

machines?

❑ We must identify potential parallelism in
applications.

❑ If we can find sections of computer code
which can be executed at the same time
as other sections, without changing the
results generated by that program, then
we have found potential parallelism.

❑ Before we can discuss how we exploit this
parallelism we review the machines.

Introduction to PVM 10 Manchester & North HPC T&EC

 Parallel Machines

❑ A wide variety of parallel architectures
exist.

❑ Fortunately there exists a useful
taxonomy which we can employ to
categorise them (Flynns taxonomy).

❑ This taxonomy categorises machines
dependent on how each handles
instructions (multiple programs), and
data.

Introduction to PVM 11 Manchester & North HPC T&EC

 Flynns Taxonomy

❑ The taxonomy breaks into :

■ SISD - Single Instruction/ Single Data. This
category corresponds to conventional serial
architectures.

■ MISD - Multiple Instruction/ Single Data. Here the
machine lets several processors execute different
instructions on one data stream in a pipeline
fashion.

■ SIMD - Single Instruction/ Multiple Data. Here a
single program is executed on several pieces of
data simultaneously.

■ MIMD - Multiple Executions being executed on
separate data simultaneously.

❑ This abstract taxonomy provides a
general indication of the capabilities and
programming style required for a
particular machine, but more information
is usually needed.

Introduction to PVM 12 Manchester & North HPC T&EC

 Other Considerations

❑ Grain Size : The size of processes which
we execute on processors affect how we
can use the machine.

❑ Interconnection : How processors
communicate with one another.

❑ Coupling : How processors communicate
with memory.

❑ Programming Mechanism. Whilst a wide
variety of abstract parallel programming
styles exist (one of which is the principal
topic of this course), not all are useful on
all machines.

Introduction to PVM 13 Manchester & North HPC T&EC

 Parallel Programming

❑ As computer science has yet to develop
compilers which automatically use parallel
machines well, we must program in
special ways.

❑ Various paradigms exist, but we are
interested in the message passing
technique.

Introduction to PVM 14 Manchester & North HPC T&EC

 Message Passing

❑ For message passing to be a viable
means of exploiting parallelism we
conventionally employ it on MIMD
machines.

❑ The application is split into a number of
programs. Each program operates
‘independently’, usually on different
processors.

❑ The logic of the application is maintained
by coordinating the component programs
through the exchange of messages.

❑ The maintenance of this underlying logic,
which controls how the application works
is the responsibility of the programmer,
not the machine.

❑ This makes this form of programming
hard!

Introduction to PVM 15 Manchester & North HPC T&EC

 An Example

❑ Computer animation:

for(time = start; time++; time<end)
{

process_all_bodies;
display_bodies;

}

❑ Both steps are time consuming, they
could be organised as two seperate
programs:

Graphics process

Animation process

for(time=start; ...) {
process_all_bodies;
send_graphics_data()

}

for(...){
receive_data();

display_graphics();
}

Introduction to PVM 16 Manchester & North HPC T&EC

 Facilities of MP
Libraries

❑ Application programmers don’t want to
deal with the messy aspects of getting
processors to communicate.

❑ So they use message passing libraries
which provide:

■ the ability to create processes on remote
machines

■ the ability to monitor the state of these remote
processes

■ routines which enable messages to be sent
reliably from program to program, without the
programmer needing to know how this is
achieved.

Introduction to PVM 17 Manchester & North HPC T&EC

 MP Implementations

❑ There are a large range of message
passing libraries in use today, on a wide
range of architectures.

❑ A programmer must choose between
them, though they all perform similar
functions, and so porting is not very
difficult.

❑ We will concentrate on one popular
library, PVM.

Introduction to PVM 18 Manchester & North HPC T&EC

Introduction to the
Parallel Virtual
Machine (PVM)

Introduction to PVM 19 Manchester & North HPC T&EC

 The Goals of PVM

❑ PVM has been developed over many
years by a collection of academics at
various US institutions who were
interested in research on distributed
computing.

❑ To help their work they developed an MP
library which was primarily intended for
use on a cluster of workstations, which
the library should make look like an MIMD
parallel computer.

❑ This means many people use PVM on
networks of normal workstations, but can
take code from these environments and
execute them on expensive PM’s.

Introduction to PVM 20 Manchester & North HPC T&EC

 History

❑ Version 1 of PVM was written during
summer of 1989 at Oak Ridge National
Labs (ORNL). Used as proof-of-concept
and never generally released.

❑ Version 2 written March 1991 at UTK.
Intended for use in HeNCE. Was a stable
and robust version, and was released
publicly.

❑ Version 3 written September 1992- Feb93

■ 3.1 (April 93) Improved task-to-task routing

■ 3.2 (Aug 93) Improved support for PM’s

■ 3.3 (Jun 94) More shared & distributed memory
support.

■ 3.3.3 (Aug 94) Current version

Introduction to PVM 21 Manchester & North HPC T&EC

 Philosophy of PVM

❑ PVM is intended to present the user with
a view of a VIRTUAL MACHINE.

❑ This is composed of many physical
machines, the complexities of dealing
with which are hidden by use of the PVM
libraries.

❑ By writing applications to execute on an
abstract virtual machine the user should
be able to take code and run it in a wide
variety of environments.

❑ To encourage this PVM has been ported
to many machines!

Introduction to PVM 22 Manchester & North HPC T&EC

 PVM Environments

❑ Currently supported machines:

❑ This list is continually being extended as
PVM development team is quite active.

Alliant FX/8
BBN TC2000
Convex
Cray YMP
Cray C90
Cray 6400
IBM 3090
Intel Paragon
Intel iPSC/2
Kendall Square Research 1
Sequent Symmetry
Stardent Titan
Thinking Machines CM-2 &
CM-5

80386 with BSD
DEC Alpha OSF/1
DEC MicroVax
HP 9000/300
HP 9000/700
IBM RS/6000
IBM/RT
NeXT
SIlicon Graphics Iris
SUN 3
SUN 4, Sparc

Introduction to PVM 23 Manchester & North HPC T&EC

 Major Features of PVM

❑ Easy to install

❑ Easy to configure

❑ Multiple users can each use PVM
simultaneously

❑ Easy to write programs (as easy as any
MP!)

❑ C & Fortran supported

❑ Package is small

❑ Multiple applications from one user can
execute.

Introduction to PVM 24 Manchester & North HPC T&EC

 Heterogeneity

❑ PVM supports heterogeneity at 3 levels:

❑ Application: Subtasks can exploit the
architecture best suited to their
application.

❑ Machine: Computers with different
formats and OS’s can collaborate in a
single VM.

❑ Network: Different types of networks can
be used, FDDI, Ethernet, Token Ring....

Introduction to PVM 25 Manchester & North HPC T&EC

 The Drawbacks

❑ We said that the user interacts with a
virtual machine. Unfortunately the desire
of users to exploit the facilities of
particular machines mean this isn’t
exactly true.

❑ The VM is virtual only in-so-much as
communication is abstracted.

❑ The programmer will still need to
physically develop code for particular
machines, and deal with multiple
compilers, different windowing systems,
editors etc.

❑ This can be either viewed as a good or
bad thing!

❑ We can now discuss the basics of how
PVM works, and what it offers.

Introduction to PVM 26 Manchester & North HPC T&EC

Fundamentals of
PVM

Introduction to PVM 27 Manchester & North HPC T&EC

 The Virtual Machine

❑ The user describes a collection of
machines which are contactable through
networks, which together constitute the
virtual machine.

❑ The user needs to supply:

■ Names (usually DNS registered) for the
component machines.

■ Information about how PVM can spawn tasks on
it, e.g., does the user need to manually type in a
password on that computer.

■ Some indication of the power of the machine, e.g.,
you want to be able to tell PVM that your Cray is
more powerful than your PC running a PD Unix.

❑ Given this information the computer can
create the PVM system.

Introduction to PVM 28 Manchester & North HPC T&EC

 How PVM Works

❑ When PVM is started it examines the VM
in which it is to operate, and creates a
process on each machine, this is called
the PVM demon, or simply pvmd.

❑ PVM provides a library of functions that
the application programmer calls. Each
function has some particular effect in the
VM.

❑ However all this library really provides is a
convenient way of asking the local pvmd
to perform some work.

❑ The pvmd then acts as the virtual
machine.

Introduction to PVM 29 Manchester & North HPC T&EC

 Cont.

❑ A sample virtual machine might be
presented as:

❑ Note that all communication is via pvmd’s

miles.mcc.ac.uk

frisell.mcc.ac.uk

coltrane.mcc.ac.uk

metheny.mcc.ac.uk

pvmd’s

Application

Network

Introduction to PVM 30 Manchester & North HPC T&EC

 What does pvmd do?

❑ pvmd is responsible for:

■ providing inter-host point of contact.

■ Authenticates task, i.e., provides all the security
features we want to ensure multiple PVM users
don’t interfere with each other.

■ Executes processes on machines.

■ Provides fault detection.

■ Routes messages not from or intended for its
host.

■ Transmits messages from its application to a
destination.

■ Receives messages from other pvmd’s, and
buffers it until the destination application can
handle it.

■ Is designed to be more robust than applications.

Introduction to PVM 31 Manchester & North HPC T&EC

 Describing the VM
using a hostfile

❑ How do we tell the PVM system which
computers we want to be part of the VM?

❑ The most common, but not the only, way
of doing this is via a hostfile, which is read
by PVM.

❑ For example:
#This is a sample PVM virtual hostfile

miles.man.ac.uk

frisell.mac.ac.uk

metheny.man.ac.uk

each of the above machines can be used to run processes on

scofield.man.ac.uk pw

but scofield requires the user to enter a password first

Introduction to PVM 32 Manchester & North HPC T&EC

 Cont.

❑ Each host listed in the file is automatically
added to the VM unless prefixed with an &

❑ Hosts are entered one per line, with the
name followed by options:

❑ You can specify default settings for
subseqent hosts with name *

❑ Comments preceded with #

Option (Description) Defaults
lo = <> (Different login name) same

pw (Pvmd asks for password) don’t ask,
use rsh

dx = <> (Special location of
pvmd)

$PVM_ROOT/
lib/pvmd

ep = <> (Special a.out search
path)

$PVM_ROOT/
bin/

ms (Requires manual startup of
pvmd)

don’t

Introduction to PVM 33 Manchester & North HPC T&EC

 Using rsh

❑ To create remote processes using rsh you
must create a .rhosts file on the remote
machine.

❑ Contains the list of machines which you
will allow people to create jobs from, and
the users you trust, e.g.,

miles.mcc.ac.uk frisell

❑ The remote rsh demon looks at this file
before allowing you to create jobs.

❑ This is a security risk!

❑ To test it works, create a .rhosts on
remote, then, on local type

rsh remote ls

❑ If you get a listing it worked!

Introduction to PVM 34 Manchester & North HPC T&EC

 Cont.

❑ Sometimes this simple example will work,
but PVM will fail.

❑ The most common cause is I/O in your
login scripts.

❑ I/O only makes sense if you have a
console/window attached to a job. If PVM
is creating jobs remotely for you, then it
has nowhere to send messages to you.

❑ Make sure your .cshrc/.bashrc etc. files
don’t contain I/O.

❑ If necessary put those commands in your
.login file, as this won’t be executed by
rsh.

Introduction to PVM 35 Manchester & North HPC T&EC

Programming in PVM

Introduction to PVM 36 Manchester & North HPC T&EC

 Starting a PVM Program

❑ A programmer writes an ordinary
program, which links in the PVM library,
which it makes calls to for message
passing and remote process control.

❑ However, before this program can be
executed the user must start the pvmd on
the local machine.

❑ When the application starts executing
locally the first PVM function call initiates
a connection to the local pvmd.

Introduction to PVM 37 Manchester & North HPC T&EC

 The VM Console

❑ PVM works to make the collection of
machines function as a virtual machine.

❑ In common with most computers it also
provides a console to this virtual machine.

❑ The console program allows users to
execute commands which affect the VM,
and perform some simple functions
without writing programs.

❑ The console program is started by typing

$ pvm [-n master] [hostfile]
pvm> _

❑ The -n option is used to position the
master pvmd on a remote host.

Introduction to PVM 38 Manchester & North HPC T&EC

 Console Details

❑ When started pvm looks to see if pvmd is
running, and if not starts one!

❑ The user executes commands by name, a
useful selection of which include:

■ add <name> : Add a new host to the VM

■ delete <name> : Delete a host from the VM

■ halt : Shuts down the console, AND the pvmd and
other apps.

■ quit : Only shuts down the console.

■ jobs : Lists any jobs executing on the VM

■ spawn : Starts a PVM application

■ help : List commands which the console accepts

Introduction to PVM 39 Manchester & North HPC T&EC

 Cont.

❑ It is important to emphasise that the
console is called pvm, but is only another
application, it doesn’t actually add any
extra functionality!

❑ The console is normally used as a
convenient way of starting pvmd with a
particular hostfile.

miles.mcc.ac.uk

pvmd

pvm (console)

User application

Introduction to PVM 40 Manchester & North HPC T&EC

 The PVM A.P.I.

❑ We can now discuss how the users
application interacts with the VM.

❑ It achieves this by calling functions in
libpvm, which call the pvmd to do the
work.

❑ Functions/Libraries are defined for C (&
C++) and Fortran.

❑ Individual applications may use programs
which have been written in C & Fortran,
and expect them to be able to
communicate easily across the VM.

❑ On the VM all programs are identified by
an integer which is provided by the PVM
libraries (actually pvmd).

Introduction to PVM 41 Manchester & North HPC T&EC

 Cont.

❑ A program finds its name by calling:

int tid = pvm_mytid(void);
or
call pvmfmytid(tid)

❑ There are two things worthy of note about
this

■ All PVM functions are named pvm_* (from C) or
pvmf* (from Fortran). This makes reading code
easier!

■ When we describe a PVM function we will present
the C & Fortran specs. They usually differ slightly,
but perform the same operation.

❑ This function is normally the first thing any
program calls, as it is important for a
program to know its name!

Introduction to PVM 42 Manchester & North HPC T&EC

 Leaving the VM

❑ The last thing any program will call is

int info = pvm_exit(void);
call pvmfexit(info)

❑ This removes the program from the VM,
BUT the program will continue to execute
on that machine!

❑ Usually such a program will do a little
local processing afterwards, perhaps to
free some memory, and will then call

exit();

❑ Only then will the program actually stop!

❑ We have now described the two most
important functions....but what do the
programs do between starting and
finishing?

Introduction to PVM 43 Manchester & North HPC T&EC

 Creating programs on
the VM

❑ One of the most important tasks a
program can do is create other programs!

❑ This is achieved by calling:

int numt = pvm_spawn(char *task,
char **argv,int flag,
char *where, int ntasks, int *tids)

call pvmfspawn(task, flag, where,
ntasks, tids, numt);

❑ The parameters for which mean

■ task : Name of program which we wish to create.

■ argv : List of parameters we wish to pass to this
new program, as per normal UNIX argv

■ where : Hostname , or empty string

■ ntasks : Number of programs with this name to
create

■ tids : Place to put the tids of new procs.

Introduction to PVM 44 Manchester & North HPC T&EC

 Cont.

❑ The Flag parameter is a way of telling the
VM how to deal with the new process. It is
a bit mask which is constructed from a
collection of operations.

■ PvmTaskDefault : PVM Chooses where to spawn
processes

■ PvmTaskHost: where argument is a hostname

■ PvmTaskArch : where argument is a particular
architecture to execute on, but we don’t care
which physical machine.

■ PvmTaskDebug: Starts a debugger, and runs task
under it

■ PvmTaskTrace : Trace data will be generated for
post-mortem debugging!

■ PvmMppFront: Starts task on MPP front end.

■ PvmHostCompl: Complements host set in where.

Introduction to PVM 45 Manchester & North HPC T&EC

 An Example

❑ To clarify this, the following example starts
a single program called worker, on a
machine called miles.mcc.ac.uk (the
binary for which must be compiled and
ready on that machine)

int worker_tid;

number = pvm_spawn(“worker”,
(char **) 0,
PvmTaskHost | PvmTaskDebug,
“miles.mcc.ac.uk”,
1, &worker_tid);

❑ The variable number is set to the number
of tasks which have been created : In this
case 1 means success, 0 failure.

❑ Note that we also wish to run a debugger
on miles.mcc , and run the worker in
that.

❑ The tid of the child is placed in worker_tid

Introduction to PVM 46 Manchester & North HPC T&EC

 Exercise

❑ We have now explained

■ How PVM operates across a collection of
workstations by pvmd’s.

■ The sort of functionality PVM applies to the
application writer.

■ How a user & program start PVM ready for use.

■ How a program creates other programs across
the virtual machine.

❑ To reinforce this we now set a very simple
exercise:

Write a program which uses PVM to start 3
child processes, each of which prints a hello
message to the screen, and then exits.

Introduction to PVM 47 Manchester & North HPC T&EC

Message Passing in
PVM

Introduction to PVM 48 Manchester & North HPC T&EC

 What do we do with the
VM?

❑ Once we have created tasks on the VM
we need to be able to coordinate their
efforts to be able to take advantage of
parallelism.

❑ We do this by using a parallel
programming technique called message
passing.

❑ As previously discussed the programs
communicate by sending data between
themselves.

Introduction to PVM 49 Manchester & North HPC T&EC

 MP Communication
Styles

❑ MP libraries provide various forms of
communication:

■ One process addressing a collection of
processes.

■ One process sending a message to another
single named process.

■ One process tries to perform a global reduction
operation on a collection of processes.

❑ PVM is no exception, and supports all
these forms of communication.

Introduction to PVM 50 Manchester & North HPC T&EC

 The PVM MP Procedure

❑ Message passing in PVM is a 3 step
process:

1 Create a buffer on the source process
which will hold the data to be sent in any
subsequent messages.

2 Place data in the buffer.

3 Initiate a send to a named group or proc-
ess.

❑ We will discuss each of these steps in
turn.

Introduction to PVM 51 Manchester & North HPC T&EC

 Managing Buffers

❑ The process of actually transferring data
to another process, i.e., passing a
message, may be a very involved
process.

❑ To simplify the user programs view of this
data is usually placed in buffers, and then
the pvmd transfers the data from those
buffers across the network.

❑ In PVM there is only ever one active send
buffer.

❑ However multiple buffers may exist, and
the library allows the program to switch
the active one between them.

Introduction to PVM 52 Manchester & North HPC T&EC

 Creating a buffer

❑ The program asks the PVM API to make
and manage buffers, and the program
only deals with them in terms of their id.

❑ To create a buffer the program calls

int bufid = pvm_mkbuf(int encoding);

❑ The encoding parameter is intended to
allow applications to speed up message
transfer.

❑ Physical computers use specific ways of
encoding data into memory.

❑ Unfortunately different processors use
different ways of encoding this!

❑ Normally this doesn’t bother us, but if we
want to transfer binary data between
machines it does!

Introduction to PVM 53 Manchester & North HPC T&EC

 Encoding Data

❑ PVM handles this problem by allowing the
user to choose whether some
intermediary encoding will be necessary
in a particular message transfer.

❑ PVM uses SUN’s XDR library to create a
machine independent data format if you
request it.

❑ Settings for the encoding option are:

■ PvmDataDefault: Use XDR by default, as the local
library cannot know in advance where you are
going to send the data.

■ PvmDataRaw: No encoding, so make sure you
are sending to a like machine.

■ PvmDataInPlace: Not only is there no encoding,
but the data isn’t even going to be physically
copied into the buffer. More on this later.

Introduction to PVM 54 Manchester & North HPC T&EC

 Using buffers

❑ Once we have created a buffer we need
to tell PVM to use it,

int oldbuf = pvm_setsbuf(int bufid);

❑ This sets the active send buffer (hence
the s!)

❑ We can switch between buffers using this
function, using oldbuf to tell us the buffer
we are switching from.

❑ When we wish to free the resources used
by the buffer we call:

int info = pvm_freebuf(int bufid);

Introduction to PVM 55 Manchester & North HPC T&EC

 Preparing to send a
message

❑ Note that PVM, when started,
automatically creates a buffer for sending.

❑ However we still need to initialise it using:

int bufid = pvm_initsend(int encoding);

❑ Once either we have created a new buffer
and set it to active, or initialised the
default buffer, we are prepared to send a
message.

Introduction to PVM 56 Manchester & North HPC T&EC

 Packing Data

❑ Any sends merely transfer data from the
current send buffer.

❑ Consequently we must be able to place
our application data in that buffer.

❑ This is achieved using packing functions.

❑ To place a single variable in the buffer the
program calls a pack function, which
places the data in the buffer, and returns a
status to tell us whether it is successful.

❑ We never know how the packing function
did its work (as it is dependent on the
encoding for a particular buffer), and we
don’t need to know where the data
actually went to.

Introduction to PVM 57 Manchester & North HPC T&EC

 Packing Functions

❑ The list of packing functions are

❑ The last parameters of most functions are

, int nitem, int stride);

❑ To allow multiple items of the same type
to be packed.

Function Data
pvm_pkbyte(char *cp, ..); Byte

pvm_pkcplx(float *xp, ..); Float

pvm_packdcplx(double *zp,..); Double

pvm_pkdouble(double *dp, ..); Double

pvm_pkfloat(float *fp, ..); Float

pvm_pkint(int *np, ..); Integer

pvm_pklong(long *np, ..); Long int

pvm_pkshort(short *np, ..); Short

pvm_pkstr(char *cp); Text

pvm_packf(const char *fmt, <>) Arbitrary

Introduction to PVM 58 Manchester & North HPC T&EC

 Cont.

❑ The last function packs a string/data line
of the same format printf() accepts into
the buffer.

❑ A single Fortran function handles all this,

call pvmfpack(what, xp, nitem,
stride, info)

■ xp : First item of array to be packed

■ nitem: Number of items (including length for
strings)

■ what: data type

■ info: Set to number of items encoded.

STRING 0 REAL4 4

BYTE1 1 COMPLEX8 5

INTEGER2 2 REAL8 6

INTEGER4 3 COMPLEX16 7

Introduction to PVM 59 Manchester & North HPC T&EC

 Packing data in place

❑ Most PVM programs spend a lot of time
packing data for sends.

❑ This may be an expensive operation, as
the memory has to be physically copied.

❑ Things can be speeded up by describing
the message buffer as using
PvmDataInPlace encoding.

❑ Then, when data is packed, a pointer is
placed in the buffer to indicate where the
actual data is held.

❑ Must be careful to not delete the data
before the data gets sent!

Introduction to PVM 60 Manchester & North HPC T&EC

 Sending Data

❑ Having created a buffer, and placed the
data in it, we can now send the data to
another process.

❑ The PVM program sends a particular
buffer with

■ a destination, which is the tid of the process the
message is intended for.

■ a msgtag, which is a label which is placed on the
message, and which is presumably meaningful to
the application.

❑ The msgtag allows different types of
messages to be labeled. For example,
warning messages might have a different
flag to work messages.

Introduction to PVM 61 Manchester & North HPC T&EC

 Initiating a send

❑ Now, finally the program sends the data
by calling

int info = pvm_send(int tid, int msgtag)

❑ If the program wishes to send to a
collection of other processes it would call
a multicast version of send:

int info = pvm_mcast(int *tids,
int ntask,
int msgtag);

❑ Here the array of integers, tids, of length
ntask, is used to send messages to all of
these.

Introduction to PVM 62 Manchester & North HPC T&EC

 An Example

❑ The following code excerpt sends a
message containing two pieces of data to
process # 1, with msgtag 2

char *text = “Hello out there”;
int count = 3;
int new_buffer;

new_buffer = pvm_mkbuf(PvmDataDefault);
pvm_setsbuf(new_buffer);
pvm_pkstr(text);
pvm_pkint(&count, 1, 0);
pvm_send(1,2);

❑ We wish to use XDR encoding, and use a
new buffer to keep the message.

❑ We have now covered sending messages
across PVM, at least in outline.

Introduction to PVM 63 Manchester & North HPC T&EC

 Receiving Messages

❑ Not surprisingly receiving messages in
PVM is also a 3 step process:

1 Prepare a buffer to receive incoming mes-
sages.

2 Receive the message into that buffer.

3 Unpack the data from that message.

❑ Again we will go through each step in
turn.

Introduction to PVM 64 Manchester & North HPC T&EC

 Preparing the receive
buffer

❑ In PVM there is only ever one active send
buffer, and one active receive buffer.

❑ Receive buffers are constructed using
pvm_mkbuf(..), and then selected using

int oldbuf = pvm_setrbuf(int bufid);

❑ Then all incoming receives will be placed
in that buffer.

Introduction to PVM 65 Manchester & North HPC T&EC

 Receiving a message

❑ There are 3 ways of receiving a message
in PVM, all of which involve asking for a
particular msgtag, or wildcard:

■ Your program will then wait until a message has
arrived which matches this.

■ Receive the message if possible, otherwise carry
on processing, but setting a flag to indicate the
success of the operation. This is often called non-
blocking receive.

■ Wait for a particular message, but if it hasn’t
arrived in some specified time operate as though
we called a non-blocking receive.

❑ and one useful sundry routine:

■ ask to see if there is a message with a particular
msgtag ready to be received.

Introduction to PVM 66 Manchester & North HPC T&EC

pvmd’s role

❑ All these functions rely on there being a
difference between messages having
reached a processor, and the message
being placed in the application receive
buffer.

❑ This is possible because all messages
are actually directed to the relevant pvmd.

❑ pvmd is always able to receive messages,
and performs some buffering to allow
some delays between the message
arriving and the application asking for it!

Introduction to PVM 67 Manchester & North HPC T&EC

 Blocking Receipt

❑ When a program wishes to receive a
message into the currently active receive
buffer, and wishes to timeout until it has
finished this operation, it calls

int bufid = pvm_recv(int tid, int msgtag)
call pvmfrecv(tid, msgtag, bufid)

❑ Note that we can wait for particular
messages from a particular sender.

❑ To use a looser wait we specify -1 in
either tid or msgtag, as a wildcard for the
relevant data.

❑ When this function has completed the
relevant message will be placed in the
active receive buffer.

Introduction to PVM 68 Manchester & North HPC T&EC

 Non-blocking Receipt

❑ If we want to receive a message if it is on
the local pvmd, but not wait if it isn’t there,
we call

int bufid = pvm_nrecv(int tid, int msgtag)
call pvmfnrecv(tid, msgtag, bufid)

❑ If the message was there, then after the
function completes the message will be in
the active receive buffer, AND bufid will
be set to the id of this buffer.

❑ Otherwise bufid will be set to 0, and the
message won’t be in the buffer.

Introduction to PVM 69 Manchester & North HPC T&EC

 Timed Receipt

❑ As a halfway house between waiting
forever, and not-waiting at all, PVM
provides a timed receipt function.

❑ The program supplies a UNIX timeval
struct to indicate how long it is prepared to
wait:

int bufid = pvm_trecv(int tid, int msgtag,
struct timeval *tmout)

call pvmftrecv(tid, msgtag, sec, usec, bufid)

❑ If the receipt was unsuccessful (a timeout
occurred) then bufid will be set to 0,
otherwise it functions as if pvm_recv()
was called.

Introduction to PVM 70 Manchester & North HPC T&EC

 Asking pvmd

❑ As an additional useful feature PVM
provides a function which lets the
application ask the local pvmd if a
message has arrived.

int bufid = pvm_probe(int tid, int msgtag)
call pvmfprobe(tid,msgtag,bufid)

❑ If the message isn’t there it sets bufid to 0,
otherwise it is set to the bufid which would
receive the message.

❑ Note that the message isn’t transferred
into the active receive buffer!

Introduction to PVM 71 Manchester & North HPC T&EC

 Unpacking Messages

❑ Once the message has been received the
program must unpack its contents into
local variables.

❑ Again this is performed by calling unpack
routines, which handle any necessary
decoding which may be necessary.

Introduction to PVM 72 Manchester & North HPC T&EC

 Cont.

❑ The list of unpacking functions are

❑ The last parameters of most functions are
nitems and stride again.

❑ A single Fortran function performs all this:

call pvmfunpack(what,xp,item,stride,info);

Function Data
pvm_upkbyte(char *cp, ..); Byte

pvm_upkcplx(float *xp, ..); Float

pvm_upackdcplx(double *zp,..); Double

pvm_upkdouble(double *dp, ..); Double

pvm_upkfloat(float *fp, ..); Float

pvm_upkint(int *np, ..); Integer

pvm_upklong(long *np, ..); Long int

pvm_upkshort(short *np, ..); Short

pvm_upkstr(char *cp); Text

pvm_upackf(const char *fmt, <>) Arbitrary

Introduction to PVM 73 Manchester & North HPC T&EC

 Transferring structures

❑ It is normal in PVM applications for
structures to be passed around from
program to program.

❑ To ease the coding effort it is common to
write a pack and unpack function specific
to this structure, as once written it
reduces the potential for errors.

Introduction to PVM 74 Manchester & North HPC T&EC

 Misc M.P.

❑ We have covered most of the functionality
of message passing in PVM.

❑ However there are a couple of routines
which relate to MP, but aren’t critical to its
use.

❑ Sending arrays:

int info = pvm_psend(int tid, int msgtag,
void *vp, int cnt, int type);

call pvmfpsend(tid,msgtag,xp,cnt,type,info)

❑ In C the what argument can be one of a
list of pre-defined types, in Fortran the
same values are used as for packing.

❑ and receiving them

int info = pvm_precv(int tid,int msgtag, void *vp,
int cnt,int *rtid, int *rtag,
int *rcnt);

call pvmfprecv(int,msgtag,xp,cnt,type,rtid,rtag,
rcnt,info)

Introduction to PVM 75 Manchester & North HPC T&EC

 Cont.

❑ Querying the contents of buffers:

int info = pvm_bufinfo(int bufid, int *bytes,
int *msgtag, int *tid);

call pvmfbufinfo(bufid,bytes,msgtag,tid,info)

❑ Bytes is set to the length of the message
currently in the named buffer, and tid the
source.

❑ Asking what the active send and receive
buffers are:

int bufid = pvmget{s|r}buf(void)
call pvmfget{s|r}buf(bufid)

❑ Modifying the way we can wait on
messages reaching the local receive
buffer.

int(*old)() = pvmrecvf(int(*new) (int buf,
int tid, int tag))

❑ This can only be done in C.

Introduction to PVM 76 Manchester & North HPC T&EC

 Exercise

❑ Now, to reinforce how PVM programs
send messages, we want to write an
application which

Introduction to PVM 77 Manchester & North HPC T&EC

Groups

Introduction to PVM 78 Manchester & North HPC T&EC

 The need for groups

❑ Many MP applications require the ability
to send messages to large groups of
processes.

❑ We could implement this in the
application, as repeated send calls, but
most environments have more efficient
ways of sending out one message to n
destinations.

❑ In PVM we can simply do this by calling
pvm_mcast() with an array of tids.

❑ Is this sufficient?....no!

Introduction to PVM 79 Manchester & North HPC T&EC

 Dynamic Groups

❑ The PVM mcast function only works when
the sender knows the tids of all the
recipients.

❑ What happens if a processor wishes to
join an existing collection? It could

■ send a message to one processor responsible for
keeping an up-to-date list of all processors within
each collection

■ it could send messages to each member of the
collection saying “hello, i’m a new member”.

❑ Both of these approaches are slow, and
fraught with difficulties....what happens if
two processors try to join at the same
time?

❑ The application programmer could
manage all this, but its a lot of work!

Introduction to PVM 80 Manchester & North HPC T&EC

 PVM’s Groups

❑ Instead PVM provides a group
abstraction, which handles all these
issues itself, leaving the application
programmer to work on the application!

❑ Internally the groups implementation
handles all the hassle of ensuring
dynamic groups can be reliably and
efficiently available.

❑ At any time any processor can join a
group, and when a processor sends a
message to the group it will reach all
member of the group.

Introduction to PVM 81 Manchester & North HPC T&EC

 Joining a PVM group

❑ A program joins a PVM group by calling
the function

int inum = pvm_joingroup(char *group);
call pvmfjoingroup(group, inum)

❑ Note that

■ the text group name indicates which group we
wish to join. If a group of that name does not exist
it is created, and this process enrolled in it.

■ the inum parameter indicates the instance
number of this process in that group.

❑ The inum parameter may change if you
join, leave and then rejoin the group.

❑ It has no relation to the tid of the calling
process!

Introduction to PVM 82 Manchester & North HPC T&EC

 Leaving the group

❑ Similarly a program leaves a group by
calling

int info = pvm_lvgroup(char *group);
call pvmflvgroup(group, info)

❑ The group name is needed because a
program can be a member of an arbitrary
number of groups.

❑ The leave group function will block until all
the relevant processing has been
performed.

Introduction to PVM 83 Manchester & North HPC T&EC

 Group Operations

❑ There are several operations a program
can perform on a group.

❑ Ask for the tid of a particular inum in a
group:

int tid = pvm_gettid(char *group, int inum)
call pvmfgettid(group,inum,tid)

❑ and the reverse operation:

int inum = pvm_getinst(char *group, int tid);
call pvmfgetinst(group,tid,inum)

❑ We can also find the number of processes
in a particular group

int size = pvm_gsize(char *group);
call pvmfgsize(group, size)

Introduction to PVM 84 Manchester & North HPC T&EC

 Sending messages

❑ Any process, whether its a member of a
group or not, can send a message to all
the members of a group.

int info = pvm_bcast(char *group, int msgtag)
call pvmfbcast(group,msgtag,info)

❑ The message is sent to all the processes
which are in the group when the bcast is
called.

❑ If a process joins the group while the
broadcast being made it may not receive
the message.

Introduction to PVM 85 Manchester & North HPC T&EC

 Controlling Groups

❑ We often wish to use groups as a way of
controlling the application.

❑ For example in a master/slave application
we might wish to have all the slaves in a
group.

❑ One of the most important things we can
do with groups is synchronise them.

❑ In PVM we can perform synchronisation
operations by the barrier function.

Introduction to PVM 86 Manchester & North HPC T&EC

 Barriers

❑ A program, which is a member of a
particular group, checks into the current
barrier operating for that group.

■ if a program checks into a barrier for a group it
isn’t a member of an error has occurred.

■ only one barrier is active for each group.

❑ Barriers are effectively blocking functions,
which will only return once a certain
number of programs have entered the
barrier.

Ti
m

e

Process A Process B Process C

Waiting in a barrier

Introduction to PVM 87 Manchester & North HPC T&EC

 Cont.

❑ A program enters the barrier for a
particular group by calling:

int info = pvm_barrier(char *group, int count)
call pvmfbarrier(group,count,info)

❑ This barrier will wait until count members
of a group have called pvm_barrier.

❑ Normally count is set to the number of
processes that are in the group, but the
program must specify this explicitly!

❑ Note that it is possible for different
programs to each be waiting for different
numbers of processors to join the barrier.

❑ The calling function counts as 1 member.

Introduction to PVM 88 Manchester & North HPC T&EC

 Global Reduction

❑ In writing parallel programs the author
often has to code repetitive operations.

❑ To aid the developer PVM provides inbuilt
support for one major class of common
operations : global reduction.

❑ If n processors have some data on each,
and we wish to process all the data to
determine some value, and place this
value on a single processor, then this is
global reduction.

❑ We could implement all this ourselves, but
PVM does half of what we need for us.

Introduction to PVM 89 Manchester & North HPC T&EC

 Cont.

❑ Global reduction operates as follows:

■ All the processors which contain data we wish to
use, join a group.

■ They all call the pvm_reduce function.

■ This function call specifies the location of the
data, the number of local data items, the datatype
of the array, and the function which will be
performed on it.

■ The function call also tells the operation the group
instance number that we want the result to be
placed on, the root.

■ The data is then processed, and transferred to the
root. The actual data transfer is all handles by the
pvm_reduce function.

❑ In order to make this a useful operation
the pvm_reduce function allows the user
to supply their own data operation
function.

Introduction to PVM 90 Manchester & North HPC T&EC

 pvm_reduce()

❑ The function call is

int info = pvm_reduce(void (*func)(),
void *data,
int count,
int datatype,
int msgtag, char *group,
int root)

call pvmfreduce(func,data,count,datatype, msgtag,
group,root,info)

■ func is the function it will call on the data

■ data: pointer to the start address of an array of
count values.

■ datatype: The data in the array, specified either by
a constant (Fortran) or defined name (C).

■ msgtag : The tag of the message sent ot the root

■ root : Group instance number of process the data
will be sent to

■ group : Name of group.

Introduction to PVM 91 Manchester & North HPC T&EC

 An Example

❑ Imagine an example in which a collection
of workers were each performing a
minimisation function on particular
parametric areas of a function.

❑ After they have all finished we want to find
the local minimum each has found, find
the minimum of that set, and pass the
result to the master.

❑ We first have to write the local function
that each processor performs.

❑ In our case we assume that each worker
has an array of parameter values, each
entry contains a local minima. (For
simplicities sake we’ll use a 1D function)

Introduction to PVM 92 Manchester & North HPC T&EC

 Cont.

❑ So each worker has

float minimas[NUMBER_MINIMAS];

❑ We wish to find the minimum value in this
list. As this is such a common operation
PVM provides a minimum function :
PvmMin() .

❑ So each worker would be able to use this
to find the local minimum.

❑ Each worker also needs to know where
the local result needs to be sent to. This is
just an instance number in the group. In
this case we do:

parent_tid = pvm_parent();
root = pvm_getinst(MY_GROUP, parent_tid);

❑ We are, of course, assuming that the
master created all the workers.

Introduction to PVM 93 Manchester & North HPC T&EC

 Cont.

❑ So each worker, AND THE PARENT, calls
the function

info = pvm_reduce(PvmMin, minimas,
NUMBER_MINIMAS, PVM_FLOAT,
1, MY_GROUP, root);

❑ Note that we are using 1 as the msgtag,
though in a real application you would use
something more meaningful.

❑ After the root calls this function its version
of the minimas array will be overwritten
with the result of the reduce operation
over the group.

❑ The reduction operators are performed
element-wise on the data.

Introduction to PVM 94 Manchester & North HPC T&EC

 Element-wise reduction

❑ In our example, then, the minimsation
works like:

❑ This means that, if each worker has a
collection of local minimas, the root still
has some processing to perform on its
new set of minimas.

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

Root Workers
Reduction
operation

Introduction to PVM 95 Manchester & North HPC T&EC

 Warning!

❑ pvm_reduce() does not block!

❑ This means that if a task calls
pvm_reduce() and then leaves the group
before the root calls the reduction
operation an error will occur!

❑ In cases where this sort of thing could
occur it is normal to use barriers to
safeguard against it.

❑ However, provided the programmer is
aware of the risks of a catastrophe the
reduction operations are a useful tool.

Introduction to PVM 96 Manchester & North HPC T&EC

 Exercise

❑ To reinforce the use of groups within PVM
we now set a simple exercise using them!

❑

Introduction to PVM 97 Manchester & North HPC T&EC

Case Study

Introduction to PVM 98 Manchester & North HPC T&EC

 Ray Tracing

❑ We now wish to present a more complete
PVM example. For a case study we pick
ray-tracing as our application.

❑ The situation looks like:

❑ With complicated scenes this process is
extremely expensive, often requiring
hours of computation to produce a single
image.

❑ Consequently ray tracing is a popular
target for parallelisation.

Light

Screen

Eye

Introduction to PVM 99 Manchester & North HPC T&EC

 Cont.

❑ Assuming we already have a clear serial
implementation of the ray tracing
application (which may or may not be
easy to produce) we can choose our
parallelisation strategy.

❑ Fundamentally the processing involved
for determining the colour of a pixel can
be broken down into:

■ Determining whether the ray hits an object.

■ Calculating the portion of the colour dependent on
the position of each light source.

■ Calculating the colour due to reflection

■ and the colour due to refraction through the
intersecting surface.

Introduction to PVM 100 Manchester & North HPC T&EC

❑ The time complexity of determining the
colour of a pixel is entirely dependent on
the intricacies of the route its ray
traverses.

❑ The unpredictability indicates that work
farming is a promising tactic, and so PVM
is an ideal library to implement this.

❑ This means that we use two classes of
processes:

■ The master, which doles out work to,

■ the workers.

❑ We are going to have to write two
separate programs then, the master and
the worker, each of which operates on the
virtual machine.

❑ We now have to decide what the master
passes to its workers.

Introduction to PVM 101 Manchester & North HPC T&EC

 Work packets

❑ We can pass out portions of the screen.

❑ The architecture of the application might
look like:

❑ So, disregarding the setup costs, the two
programs will form a logically
straightforward application.

Master Worker

Worker

Worker

Portions of
screen

Portions of
image

Introduction to PVM 102 Manchester & North HPC T&EC

 Creating the virtual
machine

❑ Before we can run any PVM programs it is
necessary to first define the VM.

❑ For the purposes of this example we can
introduce one of the more advanced
features of the hostfile, the ability to
indicate the strength of different
processors.

❑ This will enable us to tailor the execution
of a parallel ray trace to the abilities of the
VM.

miles.mcc.ac.uk sp = 1000
scofield.mcc.ac.uk sp = 5000
frisell.mcc.ac.uk sp = 2500

❑ Values are in the range 1-1000000, with
1000 the default.

Introduction to PVM 103 Manchester & North HPC T&EC

 Implementing the
master

❑ The master program does the following:

split screen into n square blocks;
num_received = 0;
num_togo = n;

initialise workers;

while(num_received < n)
{

id = receive(message);
if(message=image)
{

place received image on screen;
num_received--;

}

if(message=request)
{

send(id,next_block);
num_togo--;

}
}

shut down workers;
finish.

Introduction to PVM 104 Manchester & North HPC T&EC

 Initialisation

❑ In many parallel applications it is
necessary to create sub-tasks, and then
provide them with enough information to
begin work.

❑ In our sample ray tracer we can achieve
this by spawning tasks, joining them all
into a group, then broadcasting the scene
details to that group.

int workers[NUM_WORKERS];

info = pvm_spawn(“worker”,(char **)argc,
PvmTaskDefault,0,NUM_WORKERS,
workers);

mynum = pvm_joingroup(“renderer”);

/* Pack scene into current send buffer */

/* Then wait for all workers to join barrier */

pvm_barrier(“renderer”,NUM_WORKERS+1);

info=pvm_bcast(“renderer”,SCENE);

Introduction to PVM 105 Manchester & North HPC T&EC

 Receiving Requests

❑ Now we enter a loop which services the
workers.

❑ We differentiate the different types of work
request by their msgtag. First we handle
any outstanding work requests

if(pvm_nrecv(-1, WORK_REQUEST))
{

/* Unpack name of sender */
/* Pack next work unit into active send buffer
pvm_send(tid, WORK_PACKET);

}

❑ If there are any requests for work
outstanding this receives the first one,
unpacks it (within which the destination is
encoded), and sends off the next
scanline.

Introduction to PVM 106 Manchester & North HPC T&EC

 Cont.

❑ The procedure for receiving completed
scanlines is very similar:

if(pvm_nrecv(-1, FINISHED_LINE))
{

/* Unpack finished line */
/* Place in screen */

}

❑ Note that, as communication is error free
in PVM, there is no need to acknowledge
receipt.

❑ Finally, when the screen is finished:

/* Pack ‘die’ message into send buffer */
pvm_bcast(“renderer”, WORK_PACKET);
pvm_lvgroup(“renderer”);
pvm_exit();

Introduction to PVM 107 Manchester & North HPC T&EC

 Implementing the
worker

❑ The worker program looks like:

initialise self;
finish_looping = 0;
while(!finish_looping)
{

send(master,request);
receive(tag);

if(tag=work)
{

process relevant portion of
image screen;

send(master,image);
}
if(tag=exit)

finish_looping=1;
}

tidy up;

❑ Note that the worker asks the master for
work, and then receives a message. It
has to check the tag to see whether it is a
die message.

Introduction to PVM 108 Manchester & North HPC T&EC

 Initialisation

❑ The worker is created by the master
program. Note that the NUM_WORKERS
was a command line argument to the
master, and this has been passed onto
the worker.Its initialisation process is:

myname = pvm_mytid();
parent = pvm_parent();

pvm_joingroup(“renderer”);

pvm_barrier(“renderer”,NUM_WORKERS+1);

bufid = pvm_recv(parent,SCENE);

/* Unpack the scene */

❑ The creation of the scene is a somewhat
involved process, but is ignored for the
purposes of this case study.

Introduction to PVM 109 Manchester & North HPC T&EC

 Work Cycle

❑ We ask for a work packet

/* Pack myname into the current send buffer */

int info = pvm_send(parent,WORK_REQUEST);
info = pvm_recv(parent,WORK_PACKET);

/* Unpack work packet */

if(..scan line to be rendered..)
{

/* Perform work */
/* Pack line into local send buffer */
pvm_send(PARENT, FINISHED_LINE);

}

❑ But if the packet is a die message we exit
the loop, and call

pvm_lvgroup(“renderer”);
pvm_exit();

Introduction to PVM 110 Manchester & North HPC T&EC

 Implementation Issues

❑ This, then, is the framework for a very
simple parallel ray tracer.

❑ It performs some coarse load balancing
by placing more processes on faster
processors.

Introduction to PVM 111 Manchester & North HPC T&EC

Conclusions

Introduction to PVM 112 Manchester & North HPC T&EC

 The features of PVM

❑ PVM provides

■ A portable platform for the construction of parallel
programs.

■ A robust message passing channel.

■ Some fault tolerance.

■ A higher level interface to the virtual machine.

■ A well documented, well supported, popular
application development tool.

❑ PVM, has during its lifetime, provided a
very useful parallel programming tool, and
will continue to do so for some time.

❑ However it is important to be aware of a
recent international standard for message
passing programs, MPI, which describes
standard features MP libraries should
provide.

Introduction to PVM 113 Manchester & North HPC T&EC

 MPI

 The Message Passing Interface

❑ The standards group intended MPI to

■ Provide source code compatibility between
machines and widely differing architectures.

■ Allow efficient implementations by providing some
commonly used higher level features (e.g., global
reduction operations).

■ Support heterogeneous architectures painlessly
(from the programmers point of view).

❑ Most current MPI implementations are
proof-of-concept or research oriented
packages.

❑ Bindings are specified for C & Fortran.

Introduction to PVM 114 Manchester & North HPC T&EC

 MPI Basics

❑ Messages are composed of two types of
data:

■ Basic types (MPI_CHARs. MPI_FLOATs) which
are defined.

■ Derived types, which the user can construct. A
similar effect can be achieved by writing a pack
and unpack routine for structures in PVM, but this
is easier to police.

❑ Derived types are defined in terms of the
basic inbuilt types.

❑ The packing which the user must perform
in PVM happens implicitly within an MPI
implementation.

Introduction to PVM 115 Manchester & North HPC T&EC

 Communication

❑ There are 4 types of communication
modes:

❑ Sends and receives may be blocking or
non-blocking.

Sender mode Mode notes

Synchronous send Only completes when messages received
by destination.

Buffered Send Will complete independently of the
recipient.

Standard Send May be either synchronous or buffered

Ready send The recipientmust already have posted a
receive call, otherwise behaviour is
undetermined!

Introduction to PVM 116 Manchester & North HPC T&EC

 Cont.

❑ MPI specifies similar reliability to PVM,
and PVM programs can be ported with
reasonable ease.

❑ MPI was developed by experienced MP
programmers. So many commonly used
features have been placed within the
standards, potentially allowing optimal
coding.

Introduction to PVM 117 Manchester & North HPC T&EC

 Drawbacks

❑ MPI suffers from two principal problems at
the moment:

■ It does not specify a standard way of describing
the virtual machine upon which an application
operates. This in stark contrast to the
considerable effort expended by PVM.

■ MPI implementations tend to be proof-of-concept
and are not maintained or documented as well as
PVM. (Hopefully this will improve!)

❑ Therefore the PVM programmer should
be aware that MPI is likely to gain in
popularity in the future, though he or she
may not need to program in it now.

Introduction to PVM 118 Manchester & North HPC T&EC

 Course Summary

❑ This course has covered:

■ The basic concept of a message passing library

■ The concept of the virtual machine

■ The basics of how PVM provides the illusion of a
virtual machine (pvmd)

■ The philosophy of programming in PVM

■ How programs are created on the VM

■ How messages are sent and received by
programs operating on the VM

■ How PVM provides dynamic program groups.

■ Some of the higher level features groups allow,
barriers & global reduction.

■ A sample application framework.

Introduction to PVM 119 Manchester & North HPC T&EC

