ASICs vs. FPLDs

- IC contains a *chip* ("die") cut from a *wafer*
 - Transistors, wires, etc. are built up on the chip in a series of layers (10-50 layers)
 - A *mask* is used to define the components of a layer as they are applied to the chip
- ASICs vs. FPLDs (+ pizza equivalent)
 - Full-custom ASIC
 - Prepare pizza sauce, toppings, dough from scratch; takes a long time
 - Standard-cell-based ASIC
 - Choose from limited selection of toppings and dough; less work but still slow
 - Gate-array-based ASIC
 - Add canned toppings to pre-cooked crusts; save some time and cost
 - Field-programmable logic device
 - Frozen pizza limited selection, trivial to cook, very cheap

Fall 2003, Lecture 03

Standard-Cell-Based ASICs

- Chip is built from pre-defined logic cells (gates, adders, etc.) called standard cells
 - Standard cells are built by someone else using full-custom design techniques
 - Save time, money, and risk by using a predesigned, pretested *cell library*
 - But have to pay for the cell library
 - Also use larger cells (microprocessors, etc.) called mega cells (sometimes cores)

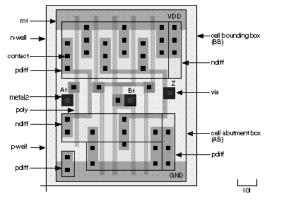


Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

Full-Custom ASICs

- Engineer does detailed design of logic cells, circuit, and layout
- Mostly used:
 - If no pre-designed cells are available (e.g., new or highly specialized circuit)
 - When high performance is needed
- Fabricated in batches of 5 to 30 *wafer lots*, each wafer containing 10–100 chips
 - Wafers are 8", maybe 13", discs
- Various technologies used (details later):
 - Bipolar legacy from analog circuits, more consistent characteristics of components across chip / wafer
 - CMOS more widely available, lots of cells and tools, seems to be what will be used for a while (at least for now)

Fall 2003, Lecture 03

Standard-Cell-Based ASICs (cont.)

- Cells fit together like bricks in a wall rows of (variable-width) cells
 - Most interconnect goes in *channels* between rows
 - Some cells may be designated as *feedthroughs* between rows
 - Other *metal layers* also provide interconnect
 - Connection between layers is called a via

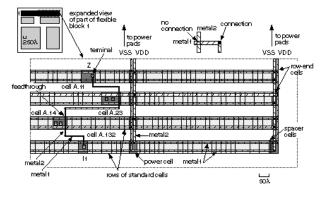


Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997 Fall 2003, Lecture 03

Gate-Array-Based ASICs

- Transistors are predefined in a fixed pattern on the chip
 - Interconnect is defined by designer and fabricated using a custom mask
 - Designer chooses cells from a gate-array library of predefined, pretested cells
- Chip is partially fabricated (cells, power, etc. added) and then stockpiled
 - When design is received for fabrication, the remaining metal layers are added
 - Cheaper everyone shares cost of producing high volume of initial chip
 - Quick turn-around days, couple weeks
- Variations:

5

- Channeled gate arrays
- Channelless gate arrays

Fall 2003, Lecture 03

6

Field Programmable Logic Devices (FPLDs)

- Known by a variety of names:
 - Field-Programmable Gate Array (FPGA)
 - Field-Programmable Logic Device (FPLD)
 - Complex Programmable Logic Device (CPLD)
- Similar to PLDs, but more complex
 - No customized mask layers
 - Some method for programming the base logic cells and the interconnect
 - Core is a regular array of programmable logic cells, each of which contains combinational and sequential logic
 - Programmable interconnect surrounds the logic cells
 - Design turn-around is on the order of hours

Programmable Logic Devices (PLDs)

- Standard ICs, available in standard configurations, sold in high volume
 - But can be configured / programmed to create a specialized device
 - No customized cells or masks, just a single large block of programmable interconnect
 - Fast turn-around time
- Examples
 - Mask-programmable ROM programmed when ordered
 - Programmable ROM programmed electrically, erased electrically or using ultraviolet light, all by customer
 - PAL, PLA 2-level sum-of-products and/or array, programmed electrically by customer (blowing fuses in array)

Fall 2003, Lecture 03