Types of FPLDs

Type of Base Cell

		Multiplexor	$\begin{aligned} & \text { Look-Up } \\ & \text { Table (LUT) } \end{aligned}$	AND-OR
Programming Method	Antifuse	Actel ACT 1, ACT 2, ACT 3 Quicklogic Crosspoint		
	EPROM			Altera MAX 5000, 7000 (Salcic 2.1) Xilinx EPLD
	SRAM	Plessy	Altera Flex 8000, Flex 10K (Salcic 2.2) Xilinx LCA 2000, 3000, 4000 (Salcic 2.3)	
		FPGAs		CPLDs

Layout / routing

- Row-based: Actel
- Matrix-based: Altera, Quicklogic, Xilinx

Implementing a Truth Table Using a Multiplexor (cont.)

■ An alternative is to "fold" the truth table, and tie each input to either 1,0 , or the MSB, and only use a 3-input multiplexor

a	b	c	d	x
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	1	0

Any y^{1} function of ${ }^{1}{ }^{1}$ inputs can be implemented using a $2^{\mathrm{N}-1}$ to 1 multiplexor

- Some FPLDs are based on multiplexors, and attach simple gates to selector lines

Implementing a Truth Table Using a Multiplexor

- Besides and-or structures, another alternative is to use a 4-input multiplexor

a	b	c	d	x
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

- Any function of N inputs can be implemented using a 2^{N} to 1 multiplexor

Implementing a Truth Table Using a ROM

■ Yet another alternative is to use a ROM

a	b	c	d	x
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

- Any function of N inputs can be implemented using a $2^{N} \times 1$ bit ROM
- Some FPLDs are based on static RAMs (SRAMS) loaded at power-up; these are said to use look-up tables (LUTs)

Different Implementation Styles
PRIMITIVE NOT AND

Chan \& Mourad, Prentice Hall 1994

Row-Based Layout

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

- Cells are arranged in rows
- Horizontal channels between rows
- Vertical channels above cells: some short, some long
- Each channel contains a fixed number of tracks, each track holds one wire
- Wires may be divided into fixed-length segments within each track
- In figure above, cell inputs connect to horizontal wires, outputs to vertical wires

Matrix-Based Layout

(a)

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997

Cells are arranged in an array (matrix)

- Horizontal and vertical channels between cells
- Each channel contains a fixed number of tracks, each track holds one wire
- In figure above:
- Cell inputs connect to horizontal tracks
- Box A connects cell output(s) to horizontal tracks, and box C connects cell output(s) to vertical tracks
- Box B acts as a switchbox between horizontal and vertical tracks

Antifuse Routing

(cont.)

- Fully segmented
- Switch at every cross point normally passes signals through vertically and horizontally, but can connect the vertical and horizontal tracks
- Antifuse connects or disconnects the segments of the horizontal channel
- Non-segmented
- Excessive area requirements
- 1-segment routing
- Divides the tracks into segments of varying lengths, which allows each net to be routed in a track of more or less the appropriate size

2-segment routing

- Allows track segments to be joined

