Topic 7: Combinational Circuits

Readings:

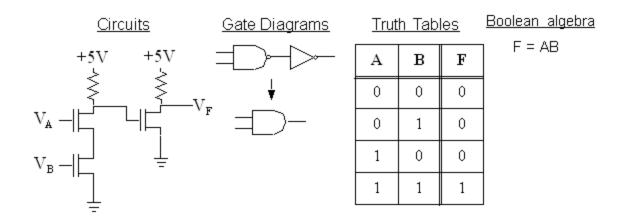
•Patterson & Hennessy Appendix B

Goals

- •Boolean algebra
- •Sum of products and products of sum form
- •Karnaugh maps

Physical to Logical Level

4 Representations



- •Circuits and gate diagrams correspond one to one
- •We can map gate diagrams to TTs. How about TT's into gate diagrams?

Need a tool: boolean algebra

•How to manipulate TTs?

Translate to boolean algebra and manipulate

Boolean Algebra

Algebra: Set of Elements, Set of Functions, Set of Axioms

- •Elements: {0,1}
- •Functions: AND (like multiply), OR (like add), NOT (bar)
- •Identities:

$$0X = 0$$
 $1 + X = 1$
 $1X = X$ $0 + X = X$

Operator Axioms

$$\bullet \ X\underline{X} = X \quad X + \underline{X} = X$$
$$XX = 0 \quad X + X = 1$$

•AND and OR are commutative:

•
$$A + B = B + A$$
 , $AB = BA$

•AND and OR obey distributive law:

•
$$A(B+C) = AB+AC$$

 $A+(BC) = (A+B)(A+C)$

•AND takes precedence over OR

$$\bullet \quad A + BC = A + (BC)$$

•AND and OR obey associative law:

•
$$A + (B + C) = (A + B) + C$$

 $A(BC) = (AB)C$

DeMorgan's laws

Proving Boolean Equations

Method #1: Algebraic method (X+Y)(X+Z) = X+YZ

Method #2: Truth tables (X+Y)(X+Z) = X+YZ

X	Y	Z	X + Y	X+ Z	LH S	YZ	RHS
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	1	1	1	1
1	0	0	1	1	1	0	1
1	0	1	1	1	1	0	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Generating Boolean Equations from Truth Tables

- •Find all rows with F=1
- •AND them together to make a product term. These are called minterms.
- •OR the minterms together $F = \overline{ABC} + A\overline{BC} + ABC$

```
A B C F
0 0 0 0
0 1 0
0 1 0 0
0 1 1 1 ABC
1 0 1 0
1 1 1 1 ABC
1 1 1 1 ABC
```

Boolean Equations from Truth Tables (cont.)

```
\overline{ABCD} + \overline{AB
Another Example F =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}
                                                                                                                            A B C D F
                                                                                                                                                                             0 \quad 0 \quad 0
                                                                                                                                                                                                                                                                                                                                   0
                                                                                                                                                                                                                                                                                                                                                                                                                 ABCD
                                                                                                                                                                                                                                                                                                                                                                                                                   ABCD
                                                                                                                                                                                                                                                                                                                                                                                                                   ĀBCD
                                                                                                                                                                                                                                                                                                                                                                                                              ABCD
                                                                                                                                                                                                                                                                                                                                                                                                                    ABCD
                                                                                                                                                                                                                                                                                                                                                                                                                   ABCD
                                                                                                                                                                                                                                                                                                                                                                                                                   ABCD
                                                                                                                                                                                                                                                                                                                                                                                                                 ABCD
                                                                                                                                                                                                                                                                                                                                                                                                                    ABCD
```

Canonical Form

• Truth Table provides a signature for the boolean function. Is there an equivalent algebraic signature?

Sum of Products form (SOP).

- •Also known as disjoint normal form or minterm expansion.
- •This is what we just did in the last two examples.

Product of Sums form (POS). AKA maxterm expansion.

•Find SOP for rows where F=0: Invert the entire expression, and apply De Morgan's law to get POS. Each sum is called a maxterm.

A B C F
0 0 0 0 A+B+C
0 0 1 0 A+B+C
0 1 0 0 A+B+C
0 1 1 1
1 0 0 1
$$\overline{A}$$

1 0 1 0 \overline{A}
1 1 1 1 \overline{A}
1 1 1 1 1 \overline{A}
(A+B+C)(A+B+C)(A+B+C)
(A+B+C)(A+B+C)
(A+B+C)(A+B+C)

Canonical Form (cont.)

```
ABCDF
0 0 0 0 0
              A+B+C+D
0 0 0 1 1
              A+B+\overline{C}+D
0 0 1 0 0
0 0 1 1 1
0 1 0 0 1
                                        (A+B+C+D)(A+B+C+D)(A+B+C+D)
0 1 0 1 0
              A+\overline{B}+C+\overline{D}
                                        (A+B+C+D)(A+B+C+D)(A+B+C+D)
              A+\overline{B}+C+D
0 1 1 0 0
0 1 1 1 1
                                        (A+B+C+D)
1 0 0 0 1
              \overline{A}+B+C+\overline{D}
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
              \overline{A} + \overline{B} + C + \overline{D}
1 1 1 0 0
              \overline{A} + \overline{B} + \overline{C} + D
11111
```

Implementing SOP using only NAND gates

Why just NAND gates?

- •AND gates are usually just NAND gates with an inverter.
- •INVERTER can be made by wiring together inputs of NAND gates

A	В	F	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

"Pushing a Bubble" through an AND changes it to an OR, and vice versa

$$(\overline{AB}) = \overline{(A+B)}$$

$$A = A$$

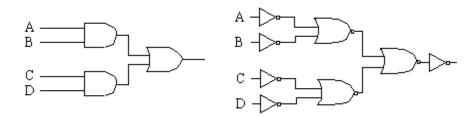
$$C = A$$

$$\begin{array}{c}
\bar{A} + \bar{B} = \bar{A}\bar{B} \\
\bar{B} = D
\end{array}$$

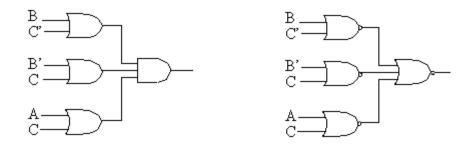
Implementing SOP using only NOR gates

What goes for NAND gates, goes for NOR gates:

- •Inverters can be made by wiring gates
- •OR gate is sometimes implemented as NOR plus INVERTER
- •Unfortunately, circuits are not very clean



What about POS using only NOR? $F = (B + \overline{C})(\overline{B} + C)(A + C)$



Canonical Form is not minimal form

Example:

F = A + BC

```
ABCF
0000
0010
0100
0111
1001
1001
1101
F = \overline{ABC} + A\overline{BC} + A\overline{BC} + AB\overline{C} + AB\overline{C}
```

Question: how to find minimal form?

Finding the minimal form

Goals is to reduce the number of literals in a boolean equation. A literal is a variable and its complement in an equation.

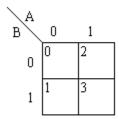
•A1: Use Boolean Algebra. Hard to know when you're "done."

•A2: Use Karnaugh maps

Karnaugh Maps

Graphical way to unify terms

Example #1: $F = A\overline{B} + AB$



More Karnaugh Maps

Example #2: $F = \overline{ABC} + A\overline{BC} + A\overline{BC} + AB\overline{C} + AB\overline{C}$

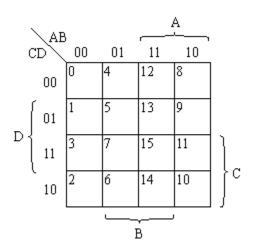
∖AB			A		
C/	00	01	11	10	
0	0	2	6	4	
1	1	3	7	5	
	В				

Goal:

- •circle as few rectangles of 1's as possible, covering all 1's
- •but: rectangle sides must be power-of-two in size (e.g., 1x1, 1x2, 2x2, 1x4, 2x4, 4x4)

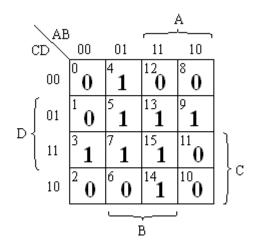
More Karnaugh Maps

```
ABCDF
0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
```



Rules of thumb for finding minimal expressions

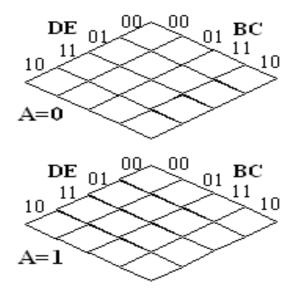
Suppose I have this K-Map

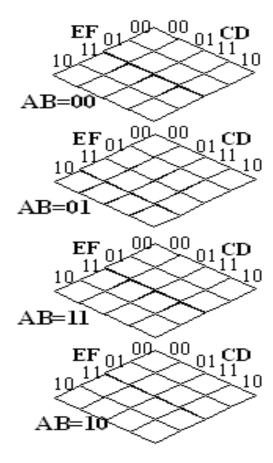


- •Largest subcube to smallest?
- •Smallest subcube to largest?

5 and 6 variable K-maps

Just a stack of 4-var K-maps





Mapping real problems to boolean equations

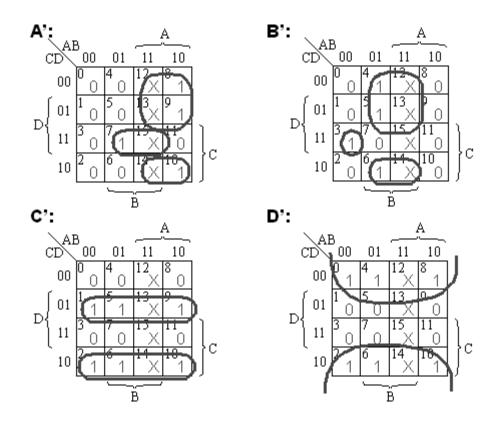
"Design a circuit for a digital clock that computes the next hour on its output, given the current hour as input."

Assumption: Hours are represented as 4 bit binary number

A	В	С	D	A'	В'	С,	D'
0	0						1
0 0 0 0 0 0 0	0	0	1	0 0 0 0 0 0	0	0 1 1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	0 1 1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	1	0	1	0
1	0	1	0	1	0	1	1
1	0 0 0 0 1 1 1 1 0 0 0	1	1	0	0	0	0
1	1	0	0	Х	Х	Х	Х
1	1	0 0 1 1 0 0 1 1 0 0 1 1 0 0	1	Х	X	Х	Х
1	1	1	0 1 0 1 0 1 0 1 0 1 0 1 0 1	0 X X X X	0 0 0 1 1 1 1 0 0 0 0 0 X X X	0 0 1 1 0 X X	XXXXX0101010101
1	1	1	1	Х	Х	Х	Х

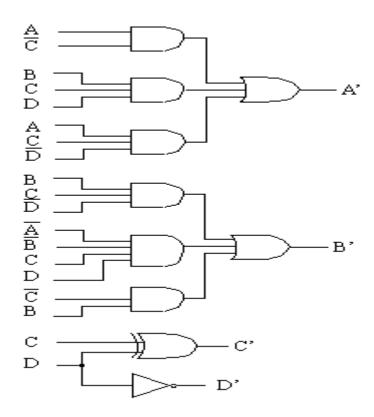
Digital Clock Example

Karnaugh Maps:



not the best!

Digital Clock Circuit



Summary

