Design Entry

- Computer Aided Design (CAD) tools typically support both graphical schematic capture as well as textual design entry (e.g., AHDL, VHDL)
 - Documentation, design, simulation, verification
- A circuit schematic shows the interconnection of structural elements that make up a circuit
 - Captures only interconnection; behavior specified separately
 - The electronic (usually ASCII) version of that schematic is called a *netlist*
- Schematic capture
 - Direct entry of the circuit schematic
 - More "bookkeeping" than "automation"

Graphic Editor

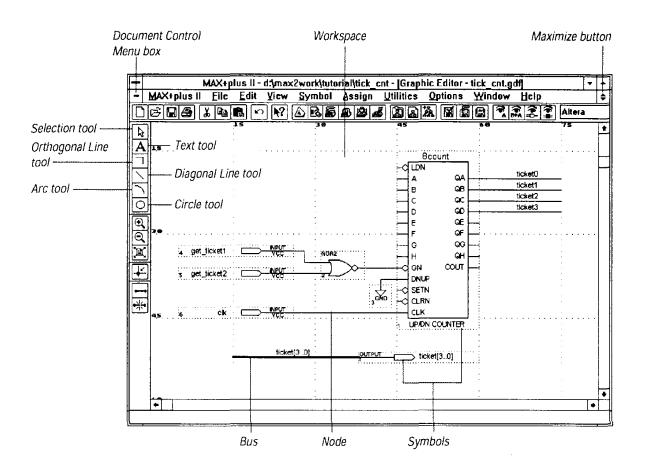


Figure from Altera technical literature

- Enter cells from various predefined component libraries, or user-defined cells
- Connect cells using nets, buses, or name
- "Smart" selection tool —!automatically becomes proper tool for task at hand

Schematic Entry

- Circuit schematics are drawn on schematic sheets, which come in standard sizes (8.5x11, 11x17, etc.)
 - Each sheet includes a labeled border, and a block listing the circuit name, designer's name, date, etc.
 - There are standards for most of the commonly-used symbols
 - Terms used in circuit schematics:

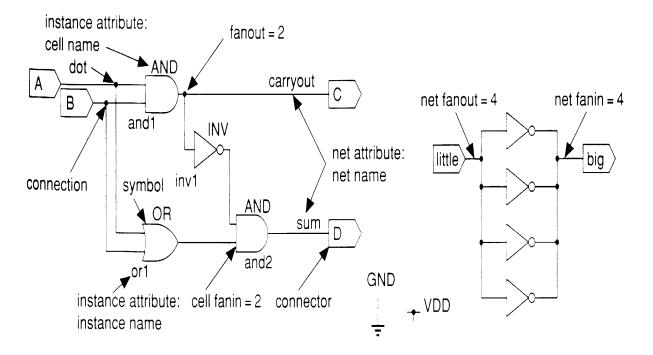


Figure from *Application-Specific Integrated Circuits*, Smith, Addison-Wesley, 1997 Fall 2004, Lecture 06

Cell Library

- Components (sometimes called modules) in a schematic are chosen from a library of cells
 - ASIC vendors provide a library of primitive gates for schematic entry
 - Users can define their own components and symbols
- Problem no standard exists
 - Individual vendors might use different names to refer to a 2-input or gate
 - May be TTL 7400-series names:
 - 2-input NAND = 7400
 - 2-input AND = 7408
 - 2-input OR = 7432
 - May be more descriptive:

– nand2, xor3, ...

- Behavior may vary
 - Which input does 2-input multiplexor select when select input S = 0?

Names & Symbols

- Each cell is represented by a picture, or icon, called a symbol
 - Primitive cells (e.g., AND gates) have standardized non-rectangular symbols
 - Subschematics are represented by special custom icons
- Each cell, whether a primitive cell or a subschematic, has a name
 - Each use of a cell in a schematic is a different *instance* of that cell, and is given a unique *instance name*

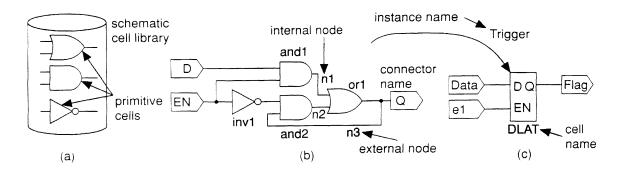
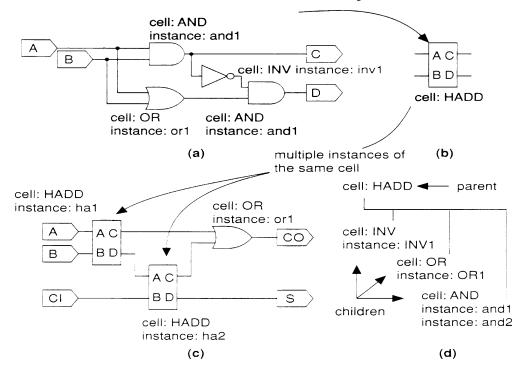


Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997


Nets

- Cell instances have *terminals*, also known as pins, connectors, or signals, that are the inputs and outputs of the cell
- Cell instances are connected by wire segments, commonly called nets
 - A *local* (internal) net is internal to a cell
 - An *external* net connects to the inputs and / or outputs of the cell
- Nets may sometimes be collected together into *buses* for convenience
 - May be represented by a thicker line on the schematic, with some indication of number of nets involved
 - Individual nets can still be accessed when necessary

Hierarchical Design

Hierarchy is used to reduce the size and complexity of the schematic

- The alternative drawing all symbols on one giant schematic with no hierarchy is called a *flat schematic*
 - Flat schematics are impractical to work with for even thousands of components
 - Flat netlists, however, are occasionally used when the hierarchy isn't relevant

FIGURE 9.3 Schematic example showing hierarchical design. (a) The schematic of a halfadder. the subschematic of cell HADD. (b) A schematic symbol for the half adder. (c) A schematic that uses the half-adder cell. (d) The hierarchy of cell HADD.

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997 Fall 2004, Lecture 06

Altera MAX+PLUS II Overview

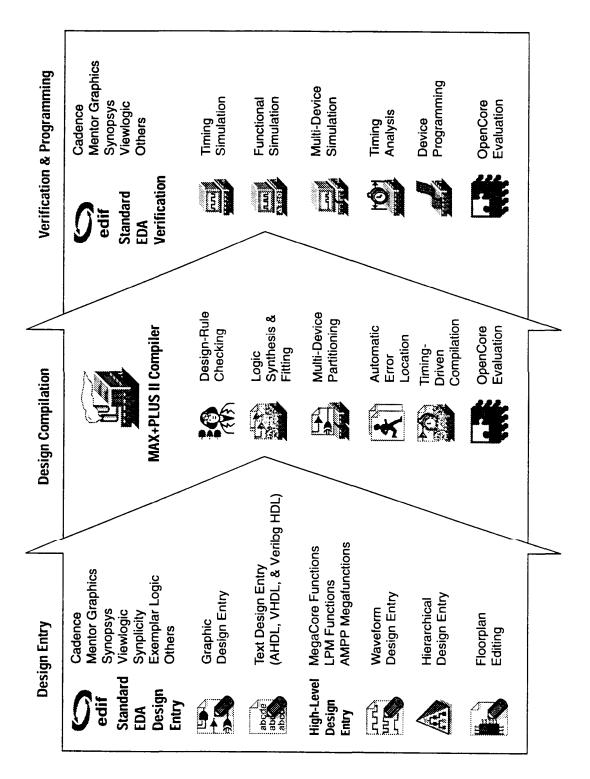


Figure from Altera technical literature

The "Chiptrip" Tutorial Example

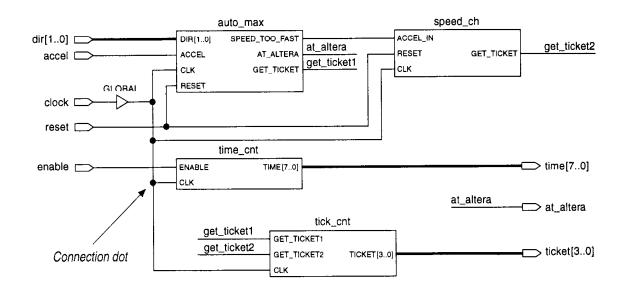


Figure from Altera technical literature

Simulates an auto driving around town

- auto_max AHDL state machine that keeps track of location of auto and acceleration at that point in time, gives ticket if you accelerate on small roads
- speed_ch waveform state machine that gives ticket if you accelerate for a second time
- tick_cnt counter that counts tickets
- time_cnt AHDL counter that keeps track of time taken to reach Altera

Graphic Editor

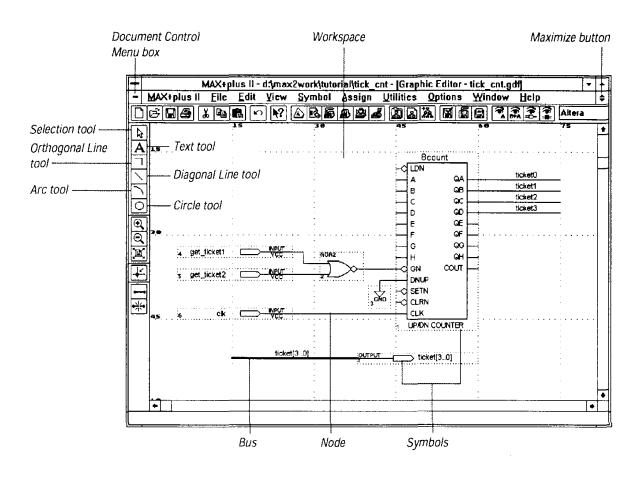


Figure from Altera technical literature

- Enter cells from various predefined component libraries, or user-defined cells
- Connect cells using nets, buses, or name
- "Smart" selection tool —!automatically becomes proper tool for task at hand

Waveform Editor (for Design Entry)

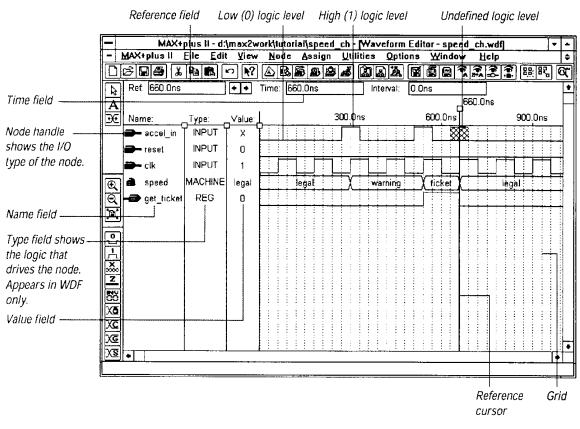
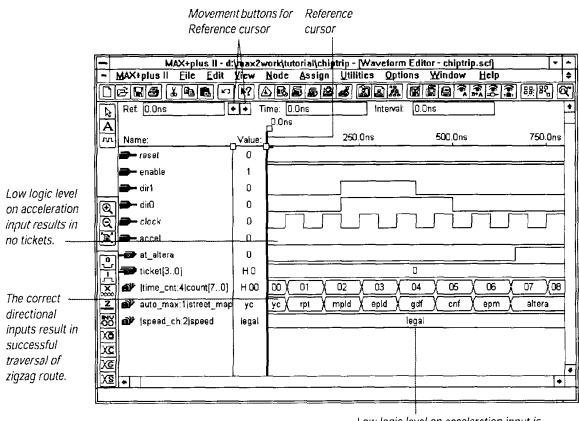


Figure from Altera technical literature

- Can contain logical and state machine inputs; combinational, registered, and state machine outputs; and "buried" nodes to help define desired outputs
 - Can specify state names for state machines
- Can compare desired and actual outputs


Compiler

	MAX+plus II - d:\max	<2workitutor	ial\chiptrip	· · · ·	· · · ·	
MAX+plus II Eile Proces		ign <u>O</u> ption		Help	·······	
		3 4 2			·* • •	
		ompiler			T	
Compiler Datat Netlist Build Extractor		Partitioner	Fitter	Timing SNF Extractor	Assembler	
	* –	X-				
<u>0</u>		50			100	
				_		
	<u>S</u> tart		Stop			
L						
		·				
		ŀ				
	-					
The progress bar	The Design			The Timing SNF		
indicates percent utility is to completion during		Irned on. Extractor module is turned on.				
processing.	7	"ha haurala		ieu on.		
processing		"he hourgla he Compile				
		processes ti				
n Altera	1-		, ,			

Figuref from Alterated technical literature

- Checks for design entry errors, builds a single large flat database
- Logic synthesis to minimize resource usage (see Assign/Global Project Logic Synthesis), partitioner and fitter to match to available devices

Waveform Editor + Simulation

Low logic level on acceleration input is reflected in the "legal" state.

Figure from Altera technical literature

- Use waveform editor to specify simulation inputs
- Simulate, then view results in waveform editor (as shown above)
 - Simulate individual or grouped nodes (particularly good for state machines)

Floorplan Editor

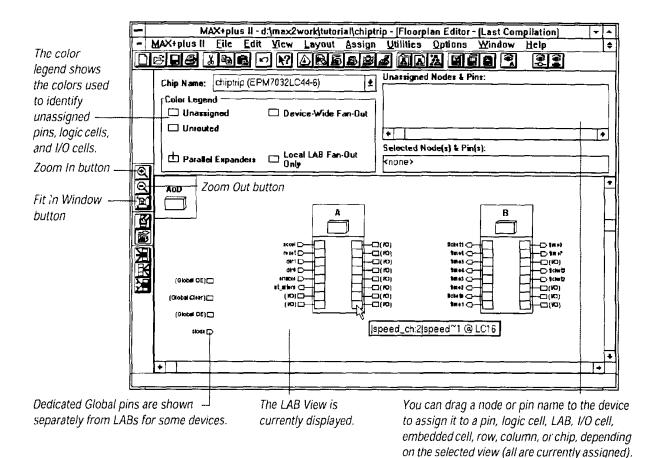


Figure from Altera technical literature

- Device view shows pins, LAB view shows LABs, equations, I/O, and routing
- Can use to edit assignments
- After compilation, get information on most congested area of chip, number of expanders used within each LAB