Topic 8: Sequential Circuits

Readings :

Patterson \& Hennesy, Appendix B.4-B. 6

Goals

- Basic Principles behind Memory Elements
- Clocks
- Applications of sequential circuits
-Introduction to the concept of the State Machine

Bistable Devices

Consider the following element

This device exhibits two stable states (bistable)
If $P=0$ (Reset), then $Q=1$ (Set).
If $P=1$ (Set), then $Q=0$ (Reset).
So ,

$$
P=\bar{Q}
$$

It is able to retain the two states, Set \& Reset indefinitely.
This is a memory cell, but there is no way to set it!

Solution: Add OR gates to make it set-able.

-The circuit on the right is called an S-R Latch (Set-Reset Latch)
-The value of the output Q and its complement represent the stored state.
$\cdot R, S$ are the inputs of the Latch

S-R Latches

Four possible cases (inputs) :

$$
\mathrm{RS}=00,01,10,11
$$

Reminder : For a NOR gate, if any input is 1 then the output is 0 .

Truth table			
	S	Q	Q^{\prime}
0	0	$1 / 0$	$0 / 1$
0	1	1	0
1	0	0	1
1	1	0	0

$\underline{S-R \text { Latches }}$

RS Latch summary

- Q is value stored in memory latch
- $\mathrm{RS}=00$ is "Hold" condition
- $\mathrm{RS}=01$ is " Set" condition (force $\mathrm{Q}=1$)
- $\mathrm{RS}=10$ is " Reset" condition (force $\mathrm{Q}=0$)
- $\mathrm{RS}=11$ is " Forbidden"

It can lead to incorrect operation : oscillation or "metastability". Q is not the complement of Q^{\prime}.

Symbol

Problems and Solutions

Problem : What to do about $\mathrm{R}=\mathrm{S}=1$
Solution: Don't let it happen. Tie together inputs with an inverter.

Now we cannot get $R=S=1$, but:
Problem : We cannot get $\mathrm{R}=\mathrm{S}=0$ ("Hold" condition)
Solution: Use "Clock" input.
$\underline{\text { Result : Clocked D-latch }(\text { No clock }=\text { hold }) ~}$

D-Latch

$\mathbf{Q}(\mathbf{t})$		
0	$\mathbf{Q (t + 1)}$	\mathbf{D}
0	0	0
1	1	1
1	1	0

Necessary topic before we proceed :

Definition :

Clock is a free-running signal with a fixed Cycle Time or Clock Period.

Clock Frequency $=1 /$ Cycle Time

The clock period is divided into two portions:
-Clock is "High"
-Clock is "Low"
-Rising Edge : Transition from Low to High
-Falling Edge: Transition from High to Low

-The duration of "High" and "Low" parts of the clock cycle need not be the same.
-Duty cycle : Fraction of the Period, when the signal is considered active.
-Edge Triggered clocking : All state changes occur at a clock edge.

Edge-Triggered Methodology:

Either the Rising or the Falling Edge of the Clock is considered Active $=$ Causes state changes to occur.

Constraint of Clocked or Synchronous Systems :
Signals must be Valid when the active clock edge occurs.
Valid $=$ Stable (not changing) for a short period before and after the edge rise or fall.

Return to the D-latch

Clk=0 ; Nothing happens ("Hold" condition) $\cdot \mathrm{Ck}=0$ equivalent to $(\mathrm{S}=0$ and $\mathrm{R}=0)$
$\mathrm{Clk}=1$; read D into Latch. Update value until C changes to 0 . $\cdot \mathrm{Ck}=1$ equivalent to $\mathrm{S}=\mathrm{D}$ and $\mathrm{R}=\mathrm{D}$ '

Operation (assuming output is initially deasserted, ie Low)

Note : NOT an Edge-Triggered D-Flip-Flop

Edge Triggered S-R Latch

Race Condition: For a D-Latch, if the input changes state, while the clock is still high, then there will be an additional change to the output, although the data to be written was the former value.

CLK

Solution to race condition: Master/Slave Flip-Flop
Also : Remember the previous reference to the edge triggered $S-R$

This is a Falling-Edge Triggered Master/Slave D Flip-Flop.
The first Latch, called the Master, follows the input D when the Clock input is asserted. When Ck falls, X is closed and the second latch, called the slave, is open and gets the input from the output of the master latch.

Edge Triggered devices $=$ Flip Flops

-The Actual circuit is more complex than shown above!

-Characteristics:

-Setup time (Tsu)

- Hold time (Th)
-Propagation Delay (Tprop)
- Minimum clock width
-... all are relative to clock edge

For a 74LS74:
$\mathrm{T}_{\mathrm{su}}=20 \mathrm{~ns}$
$T_{h}=5 n s$
Min Clock Width $=25 \mathrm{~ns}$ $T_{\text {prop }}$ (max'typical)
low to high: $25 / 13$ high to low: 40/25

Applications:

First, introduce another Flip-Flop Type :
J-K Flip-Flop

Inputs			Outputs		
\mathbf{J}	\mathbb{K}	\mathbf{C}	\mathbf{Q}	\mathbf{Q}^{\prime}	Comments
0	0	\uparrow	Q	Q^{\prime}	No change
0	1	\uparrow	0	1	RESET
1	0	\uparrow	1	0	SET
1	1	\uparrow	Q	Q	Toggle

- Counter

- Frequency Divider

- Parallel Data Storage

The Basic Idea Behind Registers

Summary

Flip flops v. latches
-Flip flops are edge triggered
-Latches are level sensitive

Many variants
-S-R, J-K, D, T latch/flip-flop
-D-type most useful in processor design

Beware of race conditions
-Need edge triggered device in any feed-back path

State machines design

Interesting state machines have inputs and outputs.
State will change depending on input.
Two classes are Mealy and Moore:

- Moore machine: output $=\mathrm{f}($ state $)$

Mealy machine: output $=f($ state, input $)$

Generally: Moore machines have more states (mnemonic), but are easier to understand.

Design Process

General Procedure

-Step 1: Create a State Diagram

- Step 2: Write down a State Transition Table
-Step 3: Figure out the inputs to the flip flops using the excitation table.
-Step 4: Figure out functions for input to flip flops
-Step 5: Implement the machine

Example

-"Write a string recognizer that recognizes the pattern 010 in its input.
-When an input bit pattern is recognized, output a 1.
-When the sequence 100 is seen, output zeros thereafter until a reset is asserted"
-Examples:
X: 001010100010
Z: 000101010000

X: 0110110100100
Z: 0000000010000

1. State diagram creation

Start with easy paths, fill in the rest, reuse as much as possible! This is a Moore machine:

2. Final state diagram

3. Symbolic State Transition Table:

State Number	Current State	Next $(\mathbf{X}=\mathbf{0})$	Next $(\mathbf{X}=\mathbf{1})$	Output
	S0			
	S1			
	S2			
	S3			
	S4			
	S5			
	S6			

4. Figure out flip flop inputs

ABCX A' $\mathbf{B}^{\prime} \mathbf{C}^{\prime}$
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

5. Reduce using K-maps

6. Output Logic

A	\mathbf{B}	\mathbf{C}	Output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	X

Karnaugh map

6. Final Circuit

State minimization

Goal: to minimize the number of states in a state diagram.
-Basic idea: Identify and combine states with equivalent behavior.

- 2 states are equivalent if the output is the same and, for each input combinations, the next state is the same state or an equivalent state.

Approach:

- Start with state transition table.
-Identify states with the same behavior
-If such states go to the same next state, combine them and rename each occurrence of the old state in the state table.
-Repeat with new state table until no new combinations are possible.

Next Time : Minimization

State Transition Table

Prefix	Name	$\mathrm{X}=0$	$\mathrm{X}=1$	Output ($\mathrm{X}=0$)	Output ($\mathrm{X}=1$)
Reset	S0	S1	S2	0	0
0	S1	S3	S4	0	0
1	S2	S5	S6	0	0
00	S3	S7	S8	0	0
01	S4	S9	S10	0	0
10	S5	S11	S12	0	0
11	S6	S13	S14	0	0
00	S7	S0	S0	0	0
-01	S8	S0	S0	0	0
010	S9	S0	S0	0	0
011	S10	S0	S0	1	0
00	S11	S0	S0	0	0
101	S12	S0	S0	1	0
110	S13	S0	S0	0	0
111	S14	S0	S0	0	0

Modified State Transition Table

Prefix	Name	$\mathrm{X}=0$	$\mathrm{X}=1$	Output $(X=0)$	Output $(X=1)$
Reset	S0	S1	S2	0	0
0	S1	S3	S4	0	0
1	S2	S5	S6	0	0
00	S3	S7'	S7 ${ }^{\prime}$	0	0
01	S4	S7'	S10'	0	0
10	S5	S7'	S10'	0	0
11	S6	S7'	S7 ${ }^{\prime}$	0	0
$\begin{aligned} & 00 \mathrm{x}, \\ & 010 \\ & 100 \\ & 11 \mathrm{x} \end{aligned}$	S7 ${ }^{\prime}$	S0	S0	0	0
$\begin{aligned} & 011 \\ & 101 \end{aligned}$	S10'	S0	S0	1	0

Modified State Transition Table (2nd iteration)

Prefix	Name	$\mathrm{X}=0$	X-1	$\begin{aligned} & \text { Output } \\ & (\mathrm{X}=0) \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Output } \\ (\mathrm{X}=1) \end{array} \end{aligned}$
Reset	S0	S1	S2	0	0
0	S1	S3'	S4'	0	0
1	S2	S4'	S3'	0	0
11	S3'	S7'	S7'	0	0
01, 10	S4'	S7	S10'	0	0
$\begin{array}{\|l\|} \hline 00 \mathrm{x}, \\ 010 \\ 100 \\ 11 \mathrm{x} \\ \hline \end{array}$	S7'	S0	S0	0	0
111 101	S10	S0	S0	1	0

State Diagram:

Summary

Components

-Flip flops (edge triggered)
-Latches (usually level triggered).
Designing Sequential Circuits
-Step 1: Create a State Diagram
-Step 2: Write down a State Transition Table
-Step 3: Do state minimization
-Step 4: Do state assignment
-Step 5: Figure out the inputs to the flip flops using the excitation table.
-Step 6: Figure out functions for input to flip flops

