
Topic 9: Building Blocks for Computers

Readings for this topic:

P&H, Appendix B.3 thru B.6

Goal
•Summary of combinatorial and sequential components that are useful for
computers.
•Techniques for combining them



Recall: Full Adder

Boo:lean Algebra



Bit Slice Adders

Problem: How to add 3 bit numbers?
•C2C1C0 = A2A1A0+ B2B1B0
•Redesigning circuit for 6 inputs would be messy and wouldn't scale well.

Solution: Cascade 1-bit adders

11111
10011
10101
01001
10110

1010
1100
0000

ContSumCinBA



Adder bit slice

This is called a "full adder".
•A "half adder" adds two bits and produces sum and carry out



Bit-slice Adder

Problem: Time to compute carry grows with number of inputs

Solution: Carry look ahead adders.

•shortcut the carry from previous group of bits to following group of bits
•How: using local group of bits, determine:
•generate: group will always generate carry into next group
•kill: group will never generate carry into next group
•propagate: group will propagate carry from previous group into next



Shifters

Shifts 1 bit left/right, based on input: 1 => shift left, 0 => shift right



Multiplexer

Given an n-bit number as input, select one of 2n inputs.

AND gate passes signal through if the control is 1



Full Shifter

Shift N-bit number N positions in one direction

Can build a shifter with multiplexors

Example: 4-bit right-shifter

Example: to make full 32-bit shifter, use 3 stages:
•stage1: shift by 0, 8, 16, or 24
•stage2: shift by 0, 2, 4, or 6
•stage3: shift by 0, or 1



ALU

Summary: we can do shifters, adders, AND, OR, NOT, XOR, ...
•Arithmetic operations generate a carry
•Logic operations have no carry

An ALU computes a function of 2 inputs O = F(A, B),
where the function F is selected by other inputs (F0, F1).

•Bit Slicing: Compute function for 1 bit using carry in and carry out.
This is just a generalization of cascaded adders.



An example ALU

A + B11
NOT B10
A OR B01
A AND B00
FunctionF

Circuit Symbol



Decoders

How do we select an operation?

Decoder: given an n-bit number as input, enables one of 2n outputs



ALU Bit Slice Schematic



ALU Schematic



Subtraction

Add: input A and B, Cin=0

Subtract: input A and B, Cin=1

How come? remember two's complement...



Building Registers

Abstraction:
•Inputs: data[N], clock, write-enable
•Output: data[N]

Using D Flip-flops, we almost get it (e.g., 8 bit register):

Problem: How do we do write-enable?



N-bit Registers

Implementing write-enable

Solution 1: Gate clock.

What are the problems with this solution?



N-bit Registers

Solution 2: Use multiplexor (MUX):

By connecting together N of the writable D Flip-flops, N bit register can be
implemented.



N-bit Register

Solution 3: Use special FF that have enable "built-in"
•Xilinx FD32CE (Flip-flop, Data input, Clear input, clock Enable):

Xilinx FD32RE (Flip-flop, Data input, Reset input, clock Enable)

Remember: never gate clocks!



Register Files

Abstraction
•holds 2M (e.g., M=4, 24=16) registers.
•Inputs: Register Number [M], Din [N], Clock, Write-enable
•Outputs: Dout[N]

Example:
•Addr=0011, W=0
Dout = Reg[3]
•Addr=0101, W=1, Din=0xFF
Reg[5] = 0xFF at clock



Register File with mux

How to select a register



Tri-state outputs

Tri-state outputs can also be off ("disabled", on: "enabled")

Normal outputs can be 0 or 1

This allows many outputs to be wired together
•as long as only one is enabled at a time!



Register File with tri-state

Hint: For HOT314 we will implement the register file using a RAM.



What goes in a RAM?

Example: 128 x 1-bit memory (128=8*16)



SRAM Cells

6-T static RAM cell

Read:
•pull bit + bit to Vcc
•pull 1 row select high
•cell pulls bit or bit low
•sense amp detects differential signal between bit and bit

Write:
•pull 1 row select high
•drive bit and bit to flip cell



DRAM Cells

1-T dynamic RAM cell

Read:
•pull bit Vcc/2
•pull 1 row select high
•cell "nudges" bit low or high
•sense amp detects difference to a reference bit line

Write:
•pull 1 row select high
•drive bit line to charge/discharge capacitor


