Topic 9: Building Blocks for Computers

Readings for this topic:

P&H, Appendix B.3 thru B.6

Goal
*Summary of combinatorial and sequential components that are useful for
computers.
*Techniques for combining them

Recall: Full Adder

Boo:lean Algebra

Sum = ABC'+ ABC'+ ABC'+ ABC

Cout = AB+BU+ AC

A

v

B

v

5

Sum

:
v

Bit Slice Adders

Problem: How to add 3 bit numbers?
«C2CI1C0O=A2A1A0+ B2B1B0

*Redesigning circuit for 6 inputs would be messy and wouldn't scale well.

Solution: Cascade 1-bit adders

A B Cin Sum | Cont

As B AL B An B
0 0 0 0 *2 *2 *1 '1 10 *n
0 0 1 1 Carry -— — -— Leat— ()
0 1 0 1
0 1 1 0 1 ¥

Ca Cy Co
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Adder bit slice

This is called a "full adder".
A "half adder" adds fwo bits and produces sum and carry out

b e

Cin
) >
Cout -— Cin
v LiD—

Bit-slice Adder

Problem: Time to compute carry grows with number of inputs

Solution: Carry look ahead adders.

shortcut the carry from previous group of bits to following group of bits
*How: using local group of bits, determine:

egenerate: group will always generate carry into next group

*kill: group will never generate carry into next group

epropagate: group will propagate carry from previous group into next

Shifters

Shifts 1 bit left/right, based on input: 1 => shift left, 0 => shift right

Multiplexer

Given an n-bit number as input, select one of 2n inputs.

A

B

Y

>

g %F# y

DU—-"
D1 — "
Dz—h

D3—h-

e —
o — -

Dy—»
Dl—""
Dy—m
D3—""
D4—"
DS—F
Dg—
D’;—h—

e —

o —m-

AND gate passes signal through if the control is 1

Q—h

_....F

Full Shifter

Shift N-bit number N positions in one direction

Can build a shifter with multiplexors

Example: 4-bit right-shifter

| | | L? | | L?w? | L?k?h? L’?L?h?c?
YYryey YY°vYY YYYY YYyYYyYYy
S0 —- L - -
51— - - -
i ¢ | |
¥ ¥
9 R] 3

Example: to make full 32-bit shifter, use 3 stages:
estagel: shift by 0, 8, 16, or 24
estage2: shift by 0, 2, 4, or 6
estage3: shift by 0, or 1

ALU

Summary: we can do shifters, adders, AND, OR, NOT, XOR, ...
Arithmetic operations generate a carry
*Logic operations have no carry

An ALU computes a function of 2 inputs O = F(A, B),

where the function F is selected by other inputs (F0, F1).
Bit Slicing: Compute function for 1 bit using carry in and carry out.
This is just a generalization of cascaded adders.

An example ALU

F Function
00 A AND B
01 A ORB
10 NOT B
11 A+B
Circuit Symbol
A B
4 4
\/
F—r » Status (carry, zero, ...)

Cutput

Decoders

How do we select an operation?

Decoder: given an n-bit number as input, enables one of 2n outputs

A B
VIV i
[Do — Do
D,
_:_Dl D,
_: —Dg _D3

ALU Bit Slice Schematic

Full adder

ALU Schematic

FEFI Aj B3 Ag B2 ;"}1B|1 AUBU

||
\Srm

- 1-bit < L-bit g 1-bit

l

I I I l

| ALU ALU ALU ALU
Cany 03 02 01 OU

Subtraction

Add: input A and B, Cin=0

Subtract: input A and B, Cin=1

How come? remember two's complement...

Building Registers

Abstraction:
Inputs: data[N], clock, write-enable
*Output: data[N]

Using D Flip-flops, we almost get it (e.g., 8 bit register):

e | D111 DU e

W C
1
Write Clock

Problem: How do we do write-enable?

N-bit Registers

Implementing write-enable

Solution 1: Gate clock.

e | D111 DU e

What are the problems with this solution?

N-bit Registers

Solution 2: Use multiplexor (MUX):

Physical Picture Logical Picture

0 D Q —w(D Qf—
Din = 1 L

i —C W C

! B A i

w o |

By connecting together N of the writable D Flip-flops, N bit register can be
implemented.

N-bit Register

Solution 3: Use special FF that have enable "built-in"
Xilinx FD32CE (Flip-flop, Data input, Clear input, clock Enable):

FD32CE
—1D Qb—

—CE

_CCLR
- 1

Xilinx FD32RE (Flip-flop, Data input, Reset input, clock Enable)

FD32RE

—CE

—C R
1

Remember: never gate clocks!

Register Files

Abstraction
*holds 2M (e.g., M=4, 24=16) registers.
Inputs: Register Number [M], Din [N], Clock, Write-enable
*Outputs: Dout|[N]

e | S A DOV frmmimipee-
M N
—l-qhb' Din
W C

Example:
*Addr=0011, W=0
Dout = Reg|3]
*Addr=0101, W=1, Din=0xFF
Reg[5] = OxFF at clock

Register File with mux

How to select a register

Din Dout fejite

RO

Din Dout fejite

32-input
C

iRl 32-bit

1 mux

Ly Dl

D ecoder

1
Din Dout pe—jig

3531

—=][=

Ol

WC Din Dout

Tri-state outputs

Normal outputs can be 0 or 1
Tri-state outputs can also be off ("disabled", on: "enabled")

This allows many outputs to be wired together
*as long as only one is enabled at a time!

“real” version

reqular inverter tri-state inverter o\
Sy & EN |N__°|E
IN l:Q T 5 }LOUT é LOUT
EN_ |
- [E

Register File with tri-state

Din Dout

¢ RO

Din Dout

¢ R1

R

Dy Ol

i) 2 00 1]

STTITE.

Din Doutp={"=f-

8531 .

’IE!

WC Din Dout

Hint: For HOT314 we will implement the register file using a RAM.

What goes in a RAM?

Example: 128 x 1-bit memory (128=8*16)

hit (data) lines
Tow word (row)
decoder lines
Tﬁ column selector -+——— column
row L - E—
I/O circuits address
address p—

!

data

SRAM Cells

6-T static RAM cell

ey

v

Read:
pull bit + bit to Vcc
pull 1 row select high
ecell pulls bit or bit low
*sense amp detects differential signal between bit and bit

Write:
pull 1 row select high
«drive bit and bit to flip cell

DRAM Cells

1-T dynamic RAM cell

_L EECELELLEEELEEE L L

0 *

Read:
pull bit Vce/2
pull 1 row select high
«cell "nudges" bit low or high
sense amp detects difference to a reference bit line

Write:
pull 1 row select high
«drive bit line to charge/discharge capacitor

