Implementing a Truth Table Using An And-Or Structure (Review)

- Given a truth table, we can use a Karnaugh map to find the minimum 2level SOP implementation

PLAs

- A 2-level and-or structure is replicated many times in a programmable array called a PLA (programmable logic array)
- Parts of a CPU's datapath or next-state logic can be built out of PLAs
- Small circuits can be built out of PLAs
- At the input of each gate, there's a "fuse" which can be left whole, or broken
- So the designer can control which inputs go to each and gate, and which outputs of the and gates go to each or gate

- A PLA can be either

- Mask programmable - customer orders a programmed PLA from the manufacturer
- Field programmable - customer can program PLA (once)

PLAs

- A 2-level and-or structure is replicated many times in a programmable array called a PLA (programmable logic array)

Diagram from Computer Systems, Maccabe, Irwin 1993
(This PLA has 2 inputs, 2 outputs, and can represent up to 3 product terms

PLA Example

- This is an abstract diagram of a PLA with 6 inputs, 4 outputs, which can represent up to 12 product terms

Diagram from Digital Design, Johnson \& Karim, PWS-Kent 1987
■ Try the Java KMap->PLA animation at http://tech-www.informatik.unihamburg.de/applets/kvd

Field-Programmable Logic Device

- The next evolutionary step beyond the PLA is the field-programmable logic device (FPLD), also called the:
- Field-programmable gate array (FPGA)
- Complex programmable logic device (CPLD)

FPLD characteristics

- Based on either an array of PLA-like andor structures, or on look-up tables
- May include D (or more complex) flipflops, to more easily build sequential circuits, possibly even RAM
- Many can be "programmed" repeatedly ■ Connect I/O to interconnect, connect interconnect to cells, control cell functions
(Available in different sizes up to 500,000 gates (100MHz, 2.5 volt, $0.25 \mu, 5$ metal)

Programming Using Antifuses

- An antifuse is normally open ("off"); when enough current ($5-15 \mathrm{~mA}$) passes through it it closes ("on")
- Current melts a thin insulating dielectric and forms a permanent silicon link

〕 Disadvantage - can only program once

- Programmed in a special hardware device
- An antifuse FPLD may contain 750,000 antifuses, but only about 2% of them typically need to be programmed
- Takes about 5-10 minutes for each chip

■ Advantages:

(Small - about the size of a via

- Low resistance, low capacitance = fast

Programming Using EPROMs \& EEPROMs (Floating Gates)

- EPROM programming \& operation:

■ To program: a high programming voltage is applied, semi-permanently turning the transistor off

- To erase: the transistor is exposed to UV light, which returns the transistor to normal operation
■ Can be reprogrammed many times
- EEPROMs are similar, but are erased electrically
- Faster to erase than EPROM, and can be done "in-circuit"
- Requires larger cell than EPROM

- Advantages

- Can be programmed repeatedly, in-circuit
- Fairly small - requires only 1 transistor

Programming Using Static RAMs (SRAMs)

Five Transistor RAM Cell

Four Transistor RAM Cell

Six Transistor RAM Cell

Figure from Field-Programmable Gate A ray Technology, Trimberger, Kluwer, 1994

Programming Using Static RAMs (SRAMs) (cont.)

- Disadvantages:
- Must load configuration from ROM, disk, etc. on power-up
- Large - requires several transistors

- Advantages:

- Can be programmed repeatedly, in-circuit - Can be programmed quickly (<1ms)
- Part has been 100% tested at factory
- Same basic process as CMOS, so quickly takes advantage of new fab processes
- CMOS also requires less power than circuits requiring pull-up resistors

■ SRAMs can be used in FPLDs to :

- Connect inputs to cells, or even to replace the cell if it's a LUT

■ Connect cells to interconnect

Types of FPLDs

Type of Base Cell

		Multiplexor	$\begin{aligned} & \text { Look-Up } \\ & \text { Table (LUT) } \end{aligned}$	AND-OR
Programming Method	Antifuse	Actel ACT 1, ACT 2, ACT 3 Quicklogic Crosspoint		
	EPROM			Altera MAX 5000, 7000 (Salcic 2.1) Xilinx EPLD
	SRAM	Plessy	Altera Flex 8000 Flex 10K (Salcic 2.2) Xilinx LCA 2000 3000, 4000 (Salcic 2.3)	

Layout / routing

\square Row-based: Actel
〕 Matrix-based: Altera, Quicklogic, Xilinx

Implementing a Truth Table Using a Multiplexor

- Besides and-or structures, an alternative is to use a 16 -input multiplexor

- - - -	00000000	\pm
- - -	- - -	O
- -	- - ○○ー-	\bigcirc
\rightarrow - - -	$\rightarrow 0 \rightarrow 0-0 \rightarrow 0$	\bigcirc
00000000	O-0-000-	\times

Any function of N inputs can be implemented using a 2^{N} to 1 multiplexor

Implementing a Truth Table Using a Multiplexor (cont.)

- An alternative is to "fold" the truth table, and tie each input to either 1,0 , or the MSB, and only use a 8 -input multiplexor

a	b	c	d	x
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	0	0
0	1	0	1	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

- Any function of N inputs can be implemented using a $2^{\mathrm{N}-1}$ to 1 multiplexor
- Some FPLDs are based on multiplexors, and attach simple gates to selector lines

Implementing a Truth Table Using a ROM

■ Yet another alternative is to use a ROM

a	b	c	d	x
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	1	1	0
1	0	1	0	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

addr. data	
0	1
1	0
2	0
3	0
4	1
5	0
6	1 data
8	0
9	0
10	0
11	0
12	0
13	0
14	0
15	0

- Any function of N inputs can be implemented using a $2^{N} x 1$ bit ROM
[Some FPLDs are based on static RAMs (SRAMS) loaded at power-up; these are said to use look-up tables (LUTs)

Row－Based Layout

Figure from Application－Specific Integrated Circuits，Smith，Addison－W esley， 1997

Cells are arranged in rows

〕 Horizontal channels between rows

〕 Vertical channels above cells：some short，some long

〕 Each channel contains a fixed number of tracks，each track holds one wire
－Wires may be divided into fixed－length segments within each track
© In figure above，cell inputs connect to horizontal wires，outputs to vertical wires

Matrix-Based Layout

Figure from Application-Specific Integrated Circuits, Smith, Addison-W esley, 1997

- Cells are arranged in an array (matrix)

[Horizontal and vertical channels between cells

〕 Each channel contains a fixed number of tracks, each track holds one wire
] In figure above:

- Cell inputs connect to horizontal tracks
- Box A connects cell output(s) to horizontal tracks, and box C connects cell output(s) to vertical tracks
- Box B acts as a switchbox between horizontal and vertical tracks

Antifuse Routing

(a) routing in unconstrained channel.

(b) routing in fully segmented channel.

(e) segmented for 2 -segment routing.

Antifuse Routing
 (cont.)

■ Fully segmented

- Switch at every cross point normally passes signals through vertically and horizontally, but can connect the vertical and horizontal tracks
\square Antifuse connects or disconnects the segments of the horizontal channel

■ Non-segmented

- Excessive area requirements

1-segment routing

(Divides the tracks into segments of varying lengths, which allows each net to be routed in a track of more or less the appropriate size

■ 2-segment routing
[Allows track segments to be joined

