
1 Fall 2003, Lecture 19

Implementing a Truth Table
Using An And-Or Structure (Review)

n Given a truth table, we can use a
Karnaugh map to find the minimum 2-
level SOP implementation

x = a'bd' + a'c'd'

a b
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1

0
0
0
0
1
1
1
1

c
0
0
1
1
0
0
1
1

0
0
1
1
0
0
1
1

d
0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1

x
1
0
0
0
1
0
1
0

0
0
0
0
0
0
0
0

1 0 0 0

1 0 0 1

a

d

0 0 0 0

0 0 0 0

b

c

a'
b
d'

a'
c'
d'

2 Fall 2003, Lecture 19

PLAs

n A 2-level and-or structure is replicated
many times in a programmable array
called a PLA (programmable logic array)
l Parts of a CPU’s datapath or next-state

logic can be built out of PLAs
l Small circuits can be built out of PLAs

n At the input of each gate, there's a “fuse”
which can be left whole, or broken
l So the designer can control which inputs

go to each and gate, and which outputs
of the and gates go to each or gate

n A PLA can be either
l Mask programmable — customer orders

a programmed PLA from the
manufacturer

l Field programmable — customer can
program PLA (once)

3 Fall 2003, Lecture 19

PLAs

n A 2-level and-or structure is replicated
many times in a programmable array
called a PLA (programmable logic array)

Diagram from Computer Systems, Maccabe, Irwin 1993

l This PLA has 2 inputs, 2 outputs, and
can represent up to 3 product terms

4 Fall 2003, Lecture 19

PLA Example

n This is an abstract diagram of a PLA
with 6 inputs, 4 outputs, which can
represent up to 12 product terms

Diagram from Digital Design, Johnson & Karim, PWS-Kent 1987

n Try the Java KMap->PLA animation at
http://tech-www.informatik.uni-
hamburg.de/applets/kvd

5 Fall 2003, Lecture 19

Field-Programmable Logic Device

n The next evolutionary step beyond the
PLA is the field-programmable logic
device (FPLD), also called the:
l Field-programmable gate array (FPGA)
l Complex programmable logic device

(CPLD)

n FPLD characteristics
l Based on either an array of PLA-like and-

or structures, or on look-up tables
l May include D (or more complex) flip-

flops, to more easily build sequential
circuits, possibly even RAM

l Many can be “programmed” repeatedly
n Connect I/O to interconnect, connect

interconnect to cells, control cell functions

l Available in different sizes up to 500,000
gates (100MHz, 2.5 volt, 0.25µ, 5 metal)

6 Fall 2003, Lecture 19

Programming Using Antifuses

n An antifuse is normally open (“off”);
when enough current (5–15mA) passes
through it it closes (“on”)
l Current melts a thin insulating dielectric

and forms a permanent silicon link
l Disadvantage — can only program once

n Programmed in a special hardware device
n An antifuse FPLD may contain 750,000

antifuses, but only about 2% of them
typically need to be programmed

n Takes about 5-10 minutes for each chip

n Advantages:
l Small — about the size of a via
l Low resistance, low capacitance = fast

7 Fall 2003, Lecture 19

Programming Using EPROMs &
EEPROMs (Floating Gates)

n EPROM programming & operation:
l To program: a high programming

voltage is applied, semi-permanently
turning the transistor off

l To erase: the transistor is exposed to
UV light, which returns the transistor to
normal operation

l Can be reprogrammed many times

n EEPROMs are similar, but are erased
electrically
l Faster to erase than EPROM, and can

be done “in-circuit”
l Requires larger cell than EPROM

n Advantages
l Can be programmed repeatedly, in-circuit
l Fairly small — requires only 1 transistor

8 Fall 2003, Lecture 19

Programming Using Static RAMs
(SRAMs)

Figure from Field-Programmable Gate Array Technology, Trimberger, Kluwer, 1994

9 Fall 2003, Lecture 19

Programming Using Static RAMs
(SRAMs) (cont.)

n Disadvantages:
l Must load configuration from ROM, disk,

etc. on power-up
l Large — requires several transistors

n Advantages:
l Can be programmed repeatedly, in-circuit

n Can be programmed quickly (< 1ms)

l Part has been 100% tested at factory
l Same basic process as CMOS, so

quickly takes advantage of new fab
processes

n CMOS also requires less power than
circuits requiring pull-up resistors

n SRAMs can be used in FPLDs to :
l Connect inputs to cells, or even to

replace the cell if it’s a LUT
l Connect cells to interconnect

10 Fall 2003, Lecture 19

Types of FPLDs

n Layout / routing
l Row-based: Actel
l Matrix-based: Altera, Quicklogic, Xilinx

Actel ACT 1,
ACT 2, ACT 3

Quicklogic

Crosspoint

Altera MAX
5000, 7000
(Salcic 2.1)

Xilinx EPLD

Plessy

Antifuse

EPROM

SRAMPr
og

ra
m

m
in

g
M

et
ho

d

Multiplexor
Look-Up

Table (LUT) AND-OR

Type of Base Cell

FPGAs CPLDs

Altera Flex 8000,
Flex 10K

(Salcic 2.2)

Xilinx LCA 2000,
3000, 4000
(Salcic 2.3)

11 Fall 2003, Lecture 19

Implementing a Truth Table
Using a Multiplexor

n Besides and-or structures, an alternative
is to use a 16-input multiplexor

n Any function of N inputs can be
implemented using a 2N to 1 multiplexor

a b
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1

0
0
0
0
1
1
1
1

c
0
0
1
1
0
0
1
1

0
0
1
1
0
0
1
1

d
0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1

x
1
0
0
0
1
0
1
0

0
0
0
0
0
0
0
0

1 0
0 1
0 2
0 3
1 4
0 5
1 6
0 7
0 8
0 9
0 10
0 11
0 12
0 13
0 14
0 15

a b c d

out z

12 Fall 2003, Lecture 19

Implementing a Truth Table
Using a Multiplexor (cont.)

n An alternative is to “fold” the truth table,
and tie each input to either 1, 0, or the
MSB, and only use a 8-input multiplexor

n Any function of N inputs can be
implemented using a 2N–1 to 1 multiplexor
l Some FPLDs are based on multiplexors,

and attach simple gates to selector lines

a b
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1

0
0
0
0
1
1
1
1

c
0
0
1
1
0
0
1
1

0
0
1
1
0
0
1
1

d
0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1

x
1
0
0
0
1
0
1
0

0
0
0
0
0
0
0
0

a' 0
0 1
0 2
0 3
a' 4
0 5
a' 6
0 7

b c d

out z

13 Fall 2003, Lecture 19

Implementing a Truth Table
Using a ROM

n Yet another alternative is to use a ROM

n Any function of N inputs can be
implemented using a 2Nx 1 bit ROM
l Some FPLDs are based on static RAMs

(SRAMS) loaded at power-up; these are
said to use look-up tables (LUTs)

a b
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1

0
0
0
0
1
1
1
1

c
0
0
1
1
0
0
1
1

0
0
1
1
0
0
1
1

d
0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1

x
1
0
0
0
1
0
1
0

0
0
0
0
0
0
0
0

10
01
02
03
14
05
16
07
08
09
010
011
012
013
014
015

a b c d

data z

addr. data

14 Fall 2003, Lecture 19

Row-Based Layout

Figure from Application-Specific Integrated Circuits, Smith, Addison-W esley, 1997

n Cells are arranged in rows
l Horizontal channels between rows
l Vertical channels above cells: some

short, some long
l Each channel contains a fixed number

of tracks, each track holds one wire
n Wires may be divided into fixed-length

segments within each track

l In figure above, cell inputs connect to
horizontal wires, outputs to vertical wires

15 Fall 2003, Lecture 19

Matrix-Based Layout

Figure from Application-Specific Integrated Circuits, Smith, Addison-W esley, 1997

n Cells are arranged in an array (matrix)
l Horizontal and vertical channels between

cells
l Each channel contains a fixed number

of tracks, each track holds one wire
l In figure above:

n Cell inputs connect to horizontal tracks
n Box A connects cell output(s) to

horizontal tracks, and box C connects cell
output(s) to vertical tracks

n Box B acts as a switchbox between
horizontal and vertical tracks

16 Fall 2003, Lecture 19

Antifuse Routing

Figure from Field-Programmable Gate Array Technology, Trimberger, Kluwer, 1994

17 Fall 2003, Lecture 19

Antifuse Routing
(cont.)

n Fully segmented
l Switch at every cross point normally

passes signals through vertically and
horizontally, but can connect the vertical
and horizontal tracks

l Antifuse connects or disconnects the
segments of the horizontal channel

n Non-segmented
l Excessive area requirements

n 1-segment routing
l Divides the tracks into segments of

varying lengths, which allows each net to
be routed in a track of more or less the
appropriate size

n 2-segment routing
l Allows track segments to be joined

